1
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Wen T, Chen M, Cryns VL, Anderson RA. Regulation of the poly(A) Polymerase Star-PAP by a Nuclear Phosphoinositide Signalosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601467. [PMID: 39005346 PMCID: PMC11244925 DOI: 10.1101/2024.07.01.601467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Star-PAP is a noncanonical poly(A) polymerase that controls gene expression. Star-PAP was previously reported to bind the phosphatidylinositol 4-phosphate 5-kinase PIPKI⍺ and its product phosphatidylinositol 4,5-bisphosphate, which regulate Star-PAP poly(A) polymerase activity and expression of specific genes. Recent studies have revealed a nuclear PI signaling pathway in which the PI transfer proteins PITP⍺/β, PI kinases and phosphatases bind p53 to sequentially modify protein-linked phosphatidylinositol phosphates and regulate its function. Here we demonstrate that multiple phosphoinositides, including phosphatidylinositol 4-monophosphate and phosphatidylinositol 3,4,5-trisphosphate are also coupled to Star-PAP in response to stress. This is initiated by PITP⍺/β binding to Star-PAP, while the Star-PAP-linked phosphoinositides are modified by PI4KII⍺, PIPKI⍺, IPMK, and PTEN recruited to Star- PAP. The phosphoinositide coupling enhances the association of the small heat shock proteins HSP27/⍺B-crystallin with Star-PAP. Knockdown of the PITPs, kinases, or HSP27 reduce the expression of Star-PAP targets. Our results demonstrate that the PITPs generate Star-PAP-PIPn complexes that are then modified by PI kinases/phosphatases and small heat shock proteins that regulate the linked phosphoinositide phosphorylation and Star-PAP activity in response to stress.
Collapse
|
3
|
Hoboth P, Sztacho M, Quaas A, Akgül B, Hozák P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol 2023; 11:1217637. [PMID: 37484912 PMCID: PMC10361526 DOI: 10.3389/fcell.2023.1217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Star-PAP, a poly(A) polymerase, functions as a tumor suppressor in an orthotopic human breast cancer model. Cell Death Dis 2017; 8:e2582. [PMID: 28151486 PMCID: PMC5386448 DOI: 10.1038/cddis.2016.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Star-PAP is a noncanonical poly(A) polymerase and required for the expression of a select set of mRNAs. However, the pathological role of Star-PAP in cancer largely remains unknown. In this study, we observed decreased expression of Star-PAP in breast cancer cell lines and tissues. Ectopic Star-PAP expression inhibited proliferation as well as colony-forming ability of breast cancer cells. In breast cancer patients, high levels of Star-PAP correlated with an improved prognosis. Moreover, by regulating the expression of BIK (BCL2-interacting killer), Star-PAP induced apoptosis of breast cancer cells through the mitochondrial pathway. The growth of breast cancer xenografts in NOD/SCID mice was also inhibited by the doxycycline-induced Star-PAP overexpression. Furthermore, Star-PAP sensitized breast cancer cells to chemotherapy drugs both in vitro and in vivo. In mammary epithelial cells, Star-PAP knockdown partially transformed these cells and induced them to undergo epithelial-mesenchymal transition (EMT). These findings suggested that Star-PAP possesses tumor-suppressing activity and can be a valuable target for developing new cancer therapeutic strategies.
Collapse
|
5
|
Haas G, Cetin S, Messmer M, Chane-Woon-Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res 2016; 44:2873-87. [PMID: 26809675 PMCID: PMC4824107 DOI: 10.1093/nar/gkw040] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3′-5′ exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection.
Collapse
Affiliation(s)
- Gabrielle Haas
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Semih Cetin
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Mélanie Messmer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Olivier Terenzi
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Johana Chicher
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Hammann
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
6
|
Xu JX, Si M, Zhang HR, Chen XJ, Zhang XD, Wang C, Du XN, Zhang HL. Phosphoinositide kinases play key roles in norepinephrine- and angiotensin II-induced increase in phosphatidylinositol 4,5-bisphosphate and modulation of cardiac function. J Biol Chem 2014; 289:6941-6948. [PMID: 24448808 DOI: 10.1074/jbc.m113.527952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIβ, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIβ and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.
Collapse
Affiliation(s)
- Jia-Xi Xu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Man Si
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hui-Ran Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xing-Juan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xi-Dong Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chuan Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Na Du
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hai-Lin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
7
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
8
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Sun Y, Thapa N, Hedman AC, Anderson RA. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013; 35:513-22. [PMID: 23575577 DOI: 10.1002/bies.201200171] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is a key lipid signaling molecule that regulates a vast array of biological activities. PI4,5P(2) can act directly as a messenger or can be utilized as a precursor to generate other messengers: inositol trisphosphate, diacylglycerol, or phosphatidylinositol 3,4,5-trisphosphate. PI4,5P(2) interacts with hundreds of different effector proteins. The enormous diversity of PI4,5P(2) effector proteins and the spatio-temporal control of PI4,5P(2) generation allow PI4,5P(2) signaling to control a broad spectrum of cellular functions. PI4,5P(2) is synthesized by phosphatidylinositol phosphate kinases (PIPKs). The array of PIPKs in cells enables their targeting to specific subcellular compartments through interactions with targeting factors that are often PI4,5P(2) effectors. These interactions are a mechanism to define spatial and temporal PI4,5P(2) synthesis and the specificity of PI4,5P(2) signaling. In turn, the regulation of PI4,5P(2) effectors at specific cellular compartments has implications for understanding how PI4,5P(2) controls cellular processes and its role in diseases.
Collapse
Affiliation(s)
- Yue Sun
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
10
|
Alterations in the MA and NC domains modulate phosphoinositide-dependent plasma membrane localization of the Rous sarcoma virus Gag protein. J Virol 2013; 87:3609-15. [PMID: 23325682 DOI: 10.1128/jvi.03059-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral Gag proteins direct virus particle assembly from the plasma membrane (PM). Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] plays a role in PM targeting of several retroviral Gag proteins. Here we report that depletion of intracellular PI(4,5)P(2) and phosphatidylinositol-(3,4,5)-triphosphate [PI(3,4,5)P(3)] levels impaired Rous sarcoma virus (RSV) Gag PM localization. Gag mutants deficient in nuclear trafficking were less sensitive to reduction of intracellular PI(4,5)P(2) and PI(3,4,5)P(3), suggesting a possible connection between Gag nuclear trafficking and phosphoinositide-dependent PM targeting.
Collapse
|
11
|
Dieck CB, Wood A, Brglez I, Rojas-Pierce M, Boss WF. Increasing phosphatidylinositol (4,5) bisphosphate biosynthesis affects plant nuclear lipids and nuclear functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:32-44. [PMID: 22677448 PMCID: PMC3601448 DOI: 10.1016/j.plaphy.2012.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/09/2012] [Indexed: 05/21/2023]
Abstract
In order to characterize the effects of increasing phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P(2)) on nuclear function, we expressed the human phosphatidylinositol (4)-phosphate 5-kinase (HsPIP5K) 1α in Nicotiana tabacum (NT) cells. The HsPIP5K-expressing (HK) cells had altered nuclear lipids and nuclear functions. HK cell nuclei had 2-fold increased PIP5K activity and increased steady state PtdIns(4,5)P(2). HK nuclear lipid classes showed significant changes compared to NT (wild type) nuclear lipid classes including increased phosphatidylserine (PtdSer) and phosphatidylcholine (PtdCho) and decreased lysolipids. Lipids isolated from protoplast plasma membranes (PM) were also analyzed and compared with nuclear lipids. The lipid profiles revealed similarities and differences in the plasma membrane and nuclei from the NT and transgenic HK cell lines. A notable characteristic of nuclear lipids from both cell types is that PtdIns accounts for a higher mol% of total lipids compared to that of the protoplast PM lipids. The lipid molecular species composition of each lipid class was also analyzed for nuclei and protoplast PM samples. To determine whether expression of HsPIP5K1α affected plant nuclear functions, we compared DNA replication, histone 3 lysine 9 acetylation (H3K9ac) and phosphorylation of the retinoblastoma protein (pRb) in NT and HK cells. The HK cells had a measurable decrease in DNA replication, histone H3K9 acetylation and pRB phosphorylation.
Collapse
Affiliation(s)
| | - Austin Wood
- Department of Biochemistry, North Carolina State University, Raleigh, NC
| | - Irena Brglez
- Department of Plant Biology, North Carolina State University, Raleigh, NC
| | | | - Wendy F. Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
12
|
Dieck CB, Boss WF, Perera IY. A role for phosphoinositides in regulating plant nuclear functions. FRONTIERS IN PLANT SCIENCE 2012; 3:50. [PMID: 22645589 PMCID: PMC3355785 DOI: 10.3389/fpls.2012.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/27/2012] [Indexed: 05/21/2023]
Abstract
Nuclear localized inositol phospholipids and inositol phosphates are important for regulating many essential processes in animal and yeast cells such as DNA replication, recombination, RNA processing, mRNA export and cell cycle progression. An overview of the current literature indicates the presence of a plant nuclear phosphoinositide (PI) pathway. Inositol phospholipids, inositol phosphates, and enzymes of the PI pathway have been identified in plant nuclei and are implicated in DNA replication, chromatin remodeling, stress responses and hormone signaling. In this review, the potential functions of the nuclear PI pathway in plants are discussed within the context of the animal and yeast literature. It is anticipated that future research will help shed light on the functional significance of the nuclear PI pathway in plants.
Collapse
Affiliation(s)
| | - Wendy F. Boss
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| | - Imara Y. Perera
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
13
|
Larijani B, Poccia DL. Effects of Phosphoinositides and Their Derivatives on Membrane Morphology and Function. Curr Top Microbiol Immunol 2012; 362:99-110. [DOI: 10.1007/978-94-007-5025-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Zaccariotto T, Lanaro C, Albuquerque D, Santos M, Bezerra M, Cunha F, Lorand-Metze I, Araujo A, Costa F, Sonati M. Expression profiles of phosphatidylinositol phosphate kinase genes during normal human in vitro erythropoiesis. GENETICS AND MOLECULAR RESEARCH 2012; 11:3861-8. [DOI: 10.4238/2012.november.12.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C. Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 2011; 46:436-57. [DOI: 10.3109/10409238.2011.609530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Cocco L, Follo MY, Faenza I, Fiume R, Ramazzotti G, Weber G, Martelli AM, Manzoli FA. Physiology and pathology of nuclear phospholipase C β1. ACTA ACUST UNITED AC 2010; 51:2-12. [PMID: 21035488 DOI: 10.1016/j.advenzreg.2010.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
The existence and function of inositide signaling in the nucleus is well documented and we know that the existence of the inositide cycle inside the nucleus has a biological role. An autonomous lipid-dependent signaling system, independently regulated from its plasma membrane counterpart, acts in the nucleus and modulates cell cycle progression and differentiation.We and others focused on PLCβ1, which is the most extensively investigated PLC isoform in the nuclear compartment. PLCβ1 is a key player in the regulation of nuclear inositol lipid signaling, and, as discussed above, its function could also be involved in nuclear structure because it hydrolyses PtdIns(4,5)P2, a well accepted regulator of chromatin remodelling. The evidence, in a number of patients with myelodysplastic syndromes, that the mono-allelic deletion of PLCβ1 is associated with an increased risk of developing acute myeloid leukemia paves the way for an entirely new field of investigation. Indeed the genetic defect evidenced, in addition to being a useful prognostic tool, also suggests that altered expression of this enzyme could have a role in the pathogenesis of this disease, by causing an imbalance between proliferation and apoptosis. The epigenetics of PLCβ1 expression in MDS has been reviewed as well.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ramazzotti G, Faenza I, Fiume R, Matteucci A, Piazzi M, Follo MY, Cocco L. The physiology and pathology of inositide signaling in the nucleus. J Cell Physiol 2010; 226:14-20. [DOI: 10.1002/jcp.22334] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Schmidt MJ, Norbury CJ. Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:142-51. [PMID: 21956911 DOI: 10.1002/wrna.16] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The addition of nontemplated nucleotides, particularly adenylyl and uridylyl residues, to the 3' ends of RNA substrates has been the focus of much attention in recent years, and these studies have generated some intriguing surprises. In addition to the well-known canonical poly(A) polymerase (PAP) that polyadenylates mRNAs prior to export from the nucleus to the cytoplasm, a separate class of noncanonical poly(A) polymerases has emerged over the past decade. Studies on various organisms have led to the realization that these noncanonical PAPs, which are conserved from yeast to mammals, play crucial and diverse roles in the regulation of gene expression. Here we review the current knowledge of these enzymes, with an emphasis on the human proteins, and highlight recent discoveries that have implications far beyond the understanding of RNA metabolism itself.
Collapse
|