1
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
Xiong H, Zheng Z, Zhao C, Zhao M, Wang Q, Zhang P, Li Y, Zhu Y, Zhu S, Li J. Insight into the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics. Proteome Sci 2023; 21:13. [PMID: 37740197 PMCID: PMC10517512 DOI: 10.1186/s12953-023-00214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND DCM is a common cardiomyopathy worldwide, which is characterized by ventricular dilatation and systolic dysfunction. DCM is one of the most widespread diseases contributing to sudden death and heart failure. However, our understanding of its molecular mechanisms is limited because of its etiology and underlying mechanisms. Hence, this study explored the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics METHODS: DCM target genes were downloaded from the public databases. Next, DCM was induced in 20 rats by 8 weeks doxorubicin treatment (2.5 mg/kg/week). We applied isobaric tags for a relative and absolute quantification (iTRAQ) coupled with proteomics approach to identify differentially expressed proteins (DEPs) in myocardial tissue. After association analysis of the DEPs and the key target genes, subsequent analyses, including functional annotation, pathway enrichment, validation, were performed. RESULTS Nine hundred thirty-five genes were identified as key target genes from public databases. Meanwhile, a total of 782 DEPs, including 348 up-regulated and 434 down-regulated proteins, were identified in our animal experiment. The functional annotation of these DEPs revealed complicated molecular mechanisms including TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction. Moreover, the DEPs were analyzed for association with the key target genes screened in the public dataset. We further determined the importance of these three pathways. CONCLUSION Our results demonstrate that TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction played important roles in the detailed molecular mechanisms of DCM.
Collapse
Affiliation(s)
- Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Zheng
- Department of Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Congcong Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou, 571100, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Paul C, Peters S, Perrin M, Fatkin D, Amerena J. Non-ischaemic dilated cardiomyopathy: recognising the genetic links. Intern Med J 2023; 53:178-185. [PMID: 36043846 DOI: 10.1111/imj.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
The landscape of genetically related cardiac disease continues to evolve. Heritable genetic variants can be a primary cause of familial or sporadic dilated cardiomyopathy (DCM). There is also increasing recognition that genetic variation is an important determinant of susceptibility to acquired causes of DCM. Genetic forms of DCM can show a wide variety of phenotypic manifestations. Identifying patients who are most likely to benefit from genetic testing is paramount. The objective of this review is to highlight the importance of recognising genetic DCM, key genotype-phenotype correlations and the value of genetic testing in clinical management for both the individual and their family. This is likely to become more relevant as management strategies continue to be refined with genotype-specific recommendations and disease-modifying therapies.
Collapse
Affiliation(s)
- Caitlin Paul
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Stacey Peters
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mark Perrin
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - John Amerena
- Department of Cardiology, University Hospital Geelong, Geelong, Victoria, Australia.,Department of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Vidusa L, Kalejs O, Maca-Kaleja A, Strumfa I. Role of Endomyocardial Biopsy in Diagnostics of Myocarditis. Diagnostics (Basel) 2022; 12:diagnostics12092104. [PMID: 36140505 PMCID: PMC9497694 DOI: 10.3390/diagnostics12092104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Endomyocardial biopsy as the cornerstone of diagnostics has been re-evaluated throughout the years, leaving unanswered questions on the precedence of it. The reported incidence of myocarditis has increased during the pandemic of coronavirus disease 2019 (COVID-19), reinforcing discussions on appropriate diagnostics of myocarditis. By analysis of evidence-based literature published within the last demi-decade, we aimed to summarize the most recent information in order to evaluate the current role of endomyocardial biopsy in diagnostics and management of myocarditis. For the most part, research published over the last five years showed ongoing uncertainty regarding the use, informativeness, safety and necessity of performing a biopsy. Special circumstances, such as fulminant clinical course or failure to respond to empirical treatment, were reconfirmed as justified indications, with a growing applicability of non-invasive diagnostic approaches for most other cases. We concluded that endomyocardial biopsy, if performed properly and with adjunct diagnostic methods, holds a critical role for treatment correction in specific histological subtypes of myocarditis and for differential diagnosis between immune-mediated myocarditis and secondary infections due to immunosuppressive treatment. A high level of possible misdiagnosing was detected, indicating the need to review terminology used to describe findings of myocardial inflammation that did not meet Dallas criteria.
Collapse
Affiliation(s)
- Liga Vidusa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Oskars Kalejs
- Department of Internal Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Latvian Centre of Cardiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Aija Maca-Kaleja
- Department of Internal Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Latvian Centre of Cardiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence:
| |
Collapse
|
6
|
Schulz LP, Vischer AS. Cardiomyopathies in the Clinical Practice - an Overview. PRAXIS 2022; 111:623-631. [PMID: 35975415 DOI: 10.1024/1661-8157/a003912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cardiomyopathies are myocardial disorders with a structurally and functionally abnormal heart muscle. In this review, we describe pathophysiological aspects, clinical presentation, diagnosis, risk stratification and therapeutical concepts of the three most common forms of cardiomyopathy: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM).
Collapse
Affiliation(s)
- Lukas P Schulz
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Annina S Vischer
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Kong Q, Gu J, Lu R, Huang C, Hu X, Wu W, Lin D. NMR-Based Metabolomic Analysis of Sera in Mouse Models of CVB3-Induced Viral Myocarditis and Dilated Cardiomyopathy. Biomolecules 2022; 12:biom12010112. [PMID: 35053260 PMCID: PMC8773787 DOI: 10.3390/biom12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Viral myocarditis (VMC) is an inflammatory heart condition which can induce dilated cardiomyopathy (DCM). However, molecular mechanisms underlying the progression of VMC into DCM remain exclusive. Here, we established mouse models of VMC and DCM by infecting male BALB/c mice with Coxsackievirus B3 (CVB3), and performed NMR-based metabonomic analyses of mouse sera. The mouse models covered three pathological stages including: acute VMC (aVMC), chronic VMC (cVMC) and DCM. We recorded 1D 1H-NMR spectra on serum samples and conducted multivariate statistical analysis on the NMR data. We found that metabolic profiles of these three pathological stages were distinct from their normal controls (CON), and identified significant metabolites primarily responsible for the metabolic distinctions. We identified significantly disturbed metabolic pathways in the aVMC, cVMC and DCM stages relative to CON, including: taurine and hypotaurine metabolism; pyruvate metabolism; glycine, serine and threonine metabolism; glycerolipid metabolism. Additionally, we identified potential biomarkers for discriminating a VMC, cVMC and DCM from CON including: taurine, valine and acetate for aVMC; glycerol, valine and leucine for cVMC; citrate, glycine and isoleucine for DCM. This work lays the basis for mechanistically understanding the progression from acute VMC to DCM, and is beneficial to exploitation of potential biomarkers for prognosis and diagnosis of heart diseases.
Collapse
Affiliation(s)
- Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Jinping Gu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China;
| | - Xiaomin Hu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
- Correspondence: (W.W.); (D.L.); Tel.: +86-771-5358955 (W.W.); +86-592-2186078 (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
- Correspondence: (W.W.); (D.L.); Tel.: +86-771-5358955 (W.W.); +86-592-2186078 (D.L.)
| |
Collapse
|
8
|
Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, Lin J, Deng S, Wu S, Fan G, Wang B. Diabetic cardiomyopathy: Clinical phenotype and practice. Front Endocrinol (Lausanne) 2022; 13:1032268. [PMID: 36568097 PMCID: PMC9767955 DOI: 10.3389/fendo.2022.1032268] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition of cardiac structure and function changes in diabetic patients without coronary artery disease, hypertension, and other types of heart diseases. DCM is not uncommon in people with diabetes, which increases the risk of heart failure. However, the treatment is scarce, and the prognosis is poor. Since 1972, one clinical study after another on DCM has been conducted. However, the complex phenotype of DCM still has not been fully revealed. This dilemma hinders the pace of understanding the essence of DCM and makes it difficult to carry out penetrating clinical or basic research. This review summarizes the literature on DCM over the last 40 years and discusses the overall perspective of DCM, phase of progression, potential clinical indicators, diagnostic and screening criteria, and related randomized controlled trials to understand DCM better.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shengwang Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Xiao Wang
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Yibing Chen
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Pai Pang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Qianjing Yang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Jingyi Lin
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shuaishuai Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shentao Wu
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Bin Wang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| |
Collapse
|
9
|
Chemokines profile in patients with chronic heart failure treated with cardiac resynchronization therapy. Adv Med Sci 2020; 65:102-110. [PMID: 31923769 DOI: 10.1016/j.advms.2019.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Inflammatory mechanisms have been suggested to play a role in the heart failure with reduced ejection fraction (HF-REF) development, but the role of chemokines is largely unknown. Cardiac resynchronization therapy (CRT) may reverse the HF-REF course. We aimed to evaluate selected chemokines concentrations in HF-REF patients and their relationship with disease severity and clinical response to CRT. MATERIALS AND METHODS The study included 37 patients (64.1 ± 11.04 years, 6 females) with HF-REF subjected to CRT, controlled prior to implantation and after 6 months. The control population included 26 healthy volunteers (63.9 ± 8.1 years, 8 females). Serum chemokines concentrations were determined using multiplex method. RESULTS HF-REF patients were characterized by the higher baseline MIF, NAP-2 and PF4 concentrations and lower Axl, BTC, IL-9, and IL-18 BPa concentrations comparing to controls. After 6 months of CRT only NAP-2 concentration decreased significantly in comparison to the baseline values. CONCLUSIONS HF-REF patients present altered chemokines profile compared to the control group. The CRT-related alleviation of HF-REF causes only slight changes in the chemokines concentrations especially in the platelet-associated ones. The precise chemokines role in the HF-REF pathogenesis and their prognostic value remains to be established.
Collapse
|
10
|
Gromova OA, Torshin IY, Kobalava ZD, Nazarenko AG. [Systematic Analysis of the Roles of Trace Elements in the Prevention and Treatment of Chronic Heart Failure]. ACTA ACUST UNITED AC 2019; 59:26-34. [PMID: 31242838 DOI: 10.18087/cardio.2019.6.n683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022]
Abstract
Systematic analysis of 3 728 publications on the relationship between microelement status and chronic heart failure (CHF) was carried out. Three main areas of research have been identified: 1) magnesium, electrolytes and CHF; 2) the transcriptional and antioxidant effects of zinc, selenium, copper; 3) iron-deficiency anemia and CHF. In this paper, we consider a complex of relationships between the magnesium insufficiency and CHF, the effect of magnesium on vascular tone, mitochondria, heart rhythm and the susceptibility of cardiomyocytes to adrenergic stimulation. Using magnesium orotate for the treatment of CHF is a feasible approach to compensate magnesium insufficiency in patients with CHF.
Collapse
Affiliation(s)
- O A Gromova
- Federal Research Center for Informatics and Management; Center for Big Data Storage and Analysis, Moscow State University
| | - I Yu Torshin
- Federal Research Center for Informatics and Management; Center for Big Data Storage and Analysis, Moscow State University
| | | | - A G Nazarenko
- N. N. Burdenko National Scientific and Practical Center for Neurosurgery
| |
Collapse
|
11
|
Oliveira AC, Melo MB, Motta-Santos D, Peluso AA, Souza-Neto F, da Silva RF, Almeida JFQ, Canta G, Reis AM, Goncalves G, Cerri G, Coutinho D, Guedes de Jesus IC, Guatimosim S, Linhares ND, Alenina N, Bader M, Campagnole-Santos MJ, Santos RAS. Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am J Physiol Heart Circ Physiol 2019; 316:H123-H133. [DOI: 10.1152/ajpheart.00075.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently described a new peptide of the renin-angiotensin system, alamandine, a derivative of angiotensin-(1–7). Mas-related G protein-coupled receptor member D (MrgD) was identified as its receptor. Although similar cardioprotective effects of alamandine to those of angiotensin-(1–7) have been described, the significance of this peptide in heart function is still elusive. We aimed to evaluate the functional role of the alamandine receptor MrgD in the heart using MrgD-deficient mice. MrgD was localized in cardiomyocytes by immunofluorescence using confocal microscopy. High-resolution echocardiography was performed in wild-type and MrgD-deficient mice (2 and 12 wk old) under isoflurane anesthesia. Standard B-mode images were obtained in the right and left parasternal long and short axes for morphological and functional assessment and evaluation of cardiac deformation. Additional heart function evaluation was performed using Langendorff isolated heart preparations and inotropic measurements of isolated cardiomyocytes. Immunofluorescence indicated that the MrgD receptor is expressed in cardiomyocytes, mainly in the membrane and perinuclear and nuclear regions. Echocardiography showed left ventricular remodeling and severe dysfunction in MrgD-deficient mice. Strikingly, MrgD-deficient mice presented a pronounced dilated cardiomyopathy with a marked decrease in systolic function. Echocardiographic changes were supported by the data obtained in isolated hearts and inotropic measurements in cardiomyocytes. Our data add new evidence for a major role for alamandine/MrgD in the heart. Furthermore, our results indicate that we have identified a new gene implicated in dilated cardiomyopathy, unveiling a new target for translational approaches aimed to treat heart diseases. NEW & NOTEWORTHY The renin-angiotensin system is a key target for cardiovascular therapy. We have recently identified a new vasodepressor/cardioprotective angiotensin, alamandine. Here, we unmasked a key role for its receptor, Mas-related G protein-coupled receptor member D (MrgD), in heart function. The severe dilated cardiomyopathy observed in MrgD-deficient mice warrants clinical and preclinical studies to unveil its potential use in cardiovascular therapy. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/mrgd-deficiency-leads-to-dilated-cardiomyopathy/ .
Collapse
Affiliation(s)
- Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Barrouin Melo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - A. Augusto Peluso
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Jonathas F. Q. Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Giovanni Canta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Adelina M. Reis
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Gleisy Goncalves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Cerri
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Coutinho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia D. Linhares
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- German Center for Cardiovascular Research, Berlin Partner Site, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- German Center for Cardiovascular Research, Berlin Partner Site, Berlin, Germany
- Charite-University Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Robson A. Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Kang Y, Wang S, Huang J, Cai L, Keller BB. Right ventricular dysfunction and remodeling in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H113-H122. [PMID: 30412438 DOI: 10.1152/ajpheart.00440.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing prevalence of diabetic cardiomyopathy (DCM) is an important threat to health worldwide. While left ventricular (LV) dysfunction in DCM is well recognized, the accurate detection, diagnosis, and treatment of changes in right ventricular (RV) structure and function have not been well characterized. The pathophysiology of RV dysfunction in DCM may share features with LV diastolic and systolic dysfunction, including pathways related to insulin resistance and oxidant injury, although the RV has a unique cellular origin and composition and unique biomechanical properties and is coupled to the lower-impedance pulmonary vascular bed. In this review, we discuss potential mechanisms responsible for RV dysfunction in DCM and review the imaging approaches useful for early detection, protection, and intervention strategies. Additional data are required from animal models and clinical trials to better identify the onset and features of altered RV and pulmonary vascular structure and function during the onset and progression of DCM and to determine the efficacy of early detection and treatment of RV dysfunction on clinical symptoms and outcomes.
Collapse
Affiliation(s)
- Yin Kang
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville , Louisville, Kentucky
| | - Sheng Wang
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, and Department of Anesthesiology, Jewish Hospital , Louisville, Kentucky
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville , Louisville, Kentucky
- Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| | - Bradley B Keller
- Pediatric Research Institute, Department of Pediatrics, University of Louisville , Louisville, Kentucky
- Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
13
|
Prognostic value of fibrosis-related markers in dilated cardiomyopathy: A link between osteopontin and cardiovascular events. Adv Med Sci 2018; 63:160-166. [PMID: 29120858 DOI: 10.1016/j.advms.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Serum markers of fibrosis provide an insight into extracellular matrix (ECM) fibrosis in heart failure (HF) and dilated cardiomyopathy (DCM). However, their role as predictors of cardiovascular (CV) events in DCM is poorly understood. METHODS This is an observational, prospective cohort study. 70 DCM patients (48±12.1years, ejection fraction - EF 24.4±7.4) were recruited. Markers of collagen type I and III synthesis - procollagen type I and III carboxy- and amino-terminal peptides (PICP, PIIICP, PINP, PIIINP), fibrosis controlling factors - ostepontin (OPN), transforming growth factor (TGF1-β) and connective tissue growth factor (CTGF), and matrix metalloproteinases (MMP-2, MMP-9) and tissue inhibitor (TIMP-1), were measured in serum. All patients underwent endomyocardial biopsy. The end-point was combined with CV death and urgent HF hospitalization. Patients were divided into two groups: those who did (group 1, n=45) and did not reach (group 2, n=25) an end-point. RESULTS Over a 12-month period of observation, 6 CV deaths and 19 HF hospitalizations occurred. Qualitative and quantitative measures of ECM fibrosis were similar in both groups. The levels of all of the markers of collagen synthesis, TGF1-β, MMP-9 and TIMP-1 were similar, however, OPN, CTGF and MMP-2 were significantly lower in group 1. CONCLUSIONS Invasively-determined fibrosis levels were not related with CV outcomes in DCM. Out of the 11 markers of fibrosis under study, only OPN was found to be related to CV outcomes. OPN is not only the pivotal protein controlling fibrosis, but may also serve as a biomarker associated with prognosis.
Collapse
|
14
|
Tie Y, Zhai C, Zhang Y, Qin X, Yu F, Li H, Shan M, Zhang C. CCAAT/enhancer-binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin-converting enzyme-2 expression in diabetes. J Cell Mol Med 2017; 22:1475-1488. [PMID: 29266779 PMCID: PMC5824391 DOI: 10.1111/jcmm.13406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/27/2022] Open
Abstract
Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer-binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin-converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh-C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti-fibrosis, anti-apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down-regulated in diabetic mice and HG-induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up-regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up-regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanyuan Tie
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chungang Zhai
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ya Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoteng Qin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fangpu Yu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongxuan Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - MeiRong Shan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
16
|
Caforio ALP, Malipiero G, Marcolongo R, Iliceto S. Clinically suspected myocarditis with pseudo-infarct presentation: the role of endomyocardial biopsy. J Thorac Dis 2017; 9:423-427. [PMID: 28449434 DOI: 10.21037/jtd.2017.03.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alida L P Caforio
- Department of Cardiological, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Giacomo Malipiero
- Department of Medicine, Hematology and Clinical Immunology, University of Padova, Padova, Italy
| | - Renzo Marcolongo
- Department of Medicine, Hematology and Clinical Immunology, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Department of Cardiological, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac dysfunction which affects approximately 12% of diabetic patients, leading to overt heart failure and death. However, there is not an efficient and specific methodology for DCM diagnosis, possibly because molecular mechanisms are not fully elucidated, and it remains asymptomatic for many years. Also, DCM frequently coexists with other comorbidities such as hypertension, obesity, dyslipidemia, and vasculopathies. Thus, human DCM is not specifically identified after heart failure is established. In this sense, echocardiography has been traditionally considered the gold standard imaging test to evaluate the presence of cardiac dysfunction, although other techniques may cover earlier DCM detection by quantification of altered myocardial metabolism and strain. In this sense, Phase-Magnetic Resonance Imaging and 2D/3D-Speckle Tracking Echocardiography may potentially diagnose and stratify diabetic patients. Additionally, this information could be completed with a quantification of specific plasma biomarkers related to related to initial stages of the disease. Cardiotrophin-1, activin A, insulin-like growth factor binding protein-7 (IGFBP-7) and Heart fatty-acid binding protein have demonstrated a stable positive correlation with cardiac hypertrophy, contractibility and steatosis responses. Thus, we suggest a combination of minimally-invasive diagnosis tools for human DCM recognition based on imaging techniques and measurements of related plasma biomarkers.
Collapse
|