1
|
Ding C, Wang J, Wang J, Niu J, Xiahou Z, Sun Z, Zhao Z, Zeng D. Heterogeneity of cancer-associated fibroblast subpopulations in prostate cancer: Implications for prognosis and immunotherapy. Transl Oncol 2025; 52:102255. [PMID: 39721245 PMCID: PMC11732565 DOI: 10.1016/j.tranon.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Prostate cancer stands as the second most common malignancy among men, notorious for its intricate heterogeneity, especially evident in metastatic disease. This complexity presents substantial challenges in treatment efficacy and patient prognosis. OBJECTIVE This study endeavors to elucidate the multifaceted roles of cancer-associated fibroblasts within the tumor microenvironment of prostate cancer, with a focus on their implications for disease prognosis and the potential for novel immunotherapeutic strategies. METHODS Leveraging advanced single-cell RNA sequencing technology, we meticulously characterized the diverse CAF subpopulations within prostate cancer samples. Our analysis identified four predominant subsets: C0 IER2+, C1 ABCA8+, C2 ABI3BP+, and C3 MEOX2+. We conducted comprehensive gene expression profiling to construct a robust prognostic model reflecting the clinical relevance of these subpopulations. RESULTS C1 ABCA8+ fibroblasts demonstrated heightened proliferative activity, underscoring their pivotal role in fostering tumor growth and metastasis via intricate signaling pathways. In vitro experiments verified that the T transcription factor NFAT5 of C1 ABCA8+ fibroblasts subpopulation was knocked down in LNCaP clone FGC and 22Rv1 cell lines, which was closely related to the proliferation of PC. Moreover, we identified key genes linked to patient outcomes and immune landscape alterations, reinforcing the prognostic significance of CAF characteristics in this context. CONCLUSION This investigation illuminates the critical potential of targeting CAFs to augment immunotherapeutic approaches in prostate cancer. Our findings contribute to a deeper understanding of the TME's complexity, advocating for further exploration into CAF-targeted therapies aimed at enhancing treatment responses and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Chen Ding
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 136 Jingzhou Street, Xiangyang, Hubei 441021, PR China
| | - Jiange Wang
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 136 Jingzhou Street, Xiangyang, Hubei 441021, PR China
| | - Jie Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, China; Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jiqiang Niu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, China.
| | - Zhenzhen Zhao
- The first clinical medical college of Shandong university of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dongyang Zeng
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 136 Jingzhou Street, Xiangyang, Hubei 441021, PR China.
| |
Collapse
|
2
|
Liu J, Sun Z, Cao S, Dai H, Zhang Z, Luo J, Wang X. Desmoglein-2 was a novel cancer-associated fibroblasts-related biomarker for oral squamous cell carcinoma. BMC Oral Health 2025; 25:102. [PMID: 39833796 PMCID: PMC11744874 DOI: 10.1186/s12903-024-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with alarmingly high morbidity. The cancer-associated fibroblasts (CAFs) play a pivotal role in tumor development, while their specific mechanisms in OSCC remains largely unclear. Our object is to explore a CAFs-related biomarker in OSCC. METHODS Single-cell RNA sequencing (ScRNA-seq) analysis was used to pinpoint CAF clusters in OSCC samples. Differentially expressed genes and Cox regression analyses were used to identify candidate genes, and their functions were evaluated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The prognostic performance of the identified biomarker was evaluated using receiver operating characteristic analysis. The qPCR and western blot were used to assess gene expression. The hub gene related immune characteristics were analyzed in independent cohorts, and gene expression differences between different immunotherapy response groups were investigated using Pearson correlation analysis. RESULTS Desmoglein-2 (DSG2) was identified as a CAFs-related biomarker in OSCC exhibiting elevated expression compared to controls and being associated with poor prognosis. Enrichment analyses revealed that DSG2 was involved in signal transduction pathways like focal adhesion. The Area Under Curve values of DSG2 in predicting prognosis exceeded 0.6 in both training-set and validation-set. Furthermore, patients with low DSG2 expression were more likely to benefit from immunotherapy than those DSG2 highly expressed patients. CONCLUSION Our study identified DSG2 as a reliable CAFs-related prognostic biomarker in OSCC, providing a new reference for the mechanistic understanding and target therapy of this malignancy.
Collapse
Affiliation(s)
- Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Zhonghao Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Shihui Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Hao Dai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China
| | - Ze Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Jingtao Luo
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
| |
Collapse
|
3
|
Ma J, Chen Z, Hou L. Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis. Aging (Albany NY) 2024; 16:12525-12542. [PMID: 39332020 PMCID: PMC11466480 DOI: 10.18632/aging.206043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.
Collapse
Affiliation(s)
- Jing Ma
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhinan Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Limin Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Zheng K, Li M. Predicting Survival Signature of Bladder Cancer Related to Cancer-Associated Fibroblast (CAF) Constructed by Intersecting Genes in TCGA and GEO. Mol Biotechnol 2024; 66:2532-2547. [PMID: 37749482 DOI: 10.1007/s12033-023-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Bladder cancer was one of the most common carcinomas around the world. However, the mechanism of the disease still remained to be investigated. We expected to establish a prognostic survival model with 9 prognostic genes to predict overall survival (OS) in patients of bladder cancer. The gene expression data of bladder cancer were obtained from TCGA and GEO datasets. TCGA and GEO datasets were used for screening prognostic genes along with developing and validating a 9-gene prognostic survival model by method of weighted gene co-expression network analysis (WGCNA) and LASSO with Cox regression. The relative analysis of evaluate tumor burden mutation (TBM), GO, KEGG, chemotherapy drug and functional pathway were also performed based on CAF-related mRNAs. 151 Overlapping CAF-related genes were distinguished after intersecting differentially expressed genes from 945 genes in TCGA and 491 genes in GEO dataset. 9 Prognostic genes (MSRB2, AGMAT, KLF6, DDAH2, GADD45B, SERPINE2, STMN3, TEAD2, and COMP) were used for construction of prognostic model after LASSO with Cox regression. Receiver operating characteristic (ROC) curves showed a good survival prediction by this model. Functional analysis indicated chemokine, cytokine, ECM interaction, oxidative stress and apoptosis were highly appeared. Potential drugs targeted different CAF-related genes like vemurafenib, irofulven, ghiotepa, and idarubicin were found as well. We constructed a novel 9 CAF-related mRNAs prognostic model and explored the gene expression and potential functional information of related genes, which might be worthy of clinical application. In addition, potential chemotherapy drugs could provide useful insights into the potential clinical treatment of bladder cancer.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Mengting Li
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Pan H, Chen X, Xiao M, Xu H, Guo J, Lu Z, Cen D, Yu X, Shi S. Multifunctional RGD coated a single-atom iron nanozyme: A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer. NANO RESEARCH 2024; 17:5469-5478. [DOI: 10.1007/s12274-024-6492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2025]
|
6
|
Wang G, Zhou Z, Jin W, Zhang X, Zhang H, Wang X. Single-cell transcriptome sequencing reveals spatial distribution of IL34 + cancer-associated fibroblasts in hepatocellular carcinoma tumor microenvironment. NPJ Precis Oncol 2023; 7:133. [PMID: 38081923 PMCID: PMC10713639 DOI: 10.1038/s41698-023-00483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 01/21/2024] Open
Abstract
We utilized scRNA-seq, a well-established technology, to uncover the gene expression characteristics of IL34+ CAFs within HCC. We analyzed the related mechanisms through in vitro and in vivo assays. To begin, we acquired scRNA-seq datasets about HCC, which enabled us to identify distinct cell subpopulations within HCC tissues. We conducted a differential analysis to pinpoint DEGs associated with normal fibroblasts (NFs) and CAFs. Subsequently, we isolated NFs and CAFs, followed by the sorting of IL34+ CAFs. These IL34+ CAFs were then co-cultured with T cells and HCC cells to investigate their potential role in Tregs infiltration, CD8+ T cell toxicity, and the biological processes of HCC cells. We validated our findings in vivo using a well-established mouse model. Our analysis of HCC tissues revealed the presence of seven primary cell subpopulations, with the most significant disparities observed within fibroblast subpopulations. Notably, high IL34 expression was linked to increased expression of receptor proteins and enhanced proliferative activity within CAFs, with specific expression in CAFs. Furthermore, we identified a substantial positive correlation between IL34 expression and the abundance of Tregs. Both in vitro and in vivo experiments demonstrated that IL34+ CAFs promoted Tregs infiltration while suppressing CD8+ T cell toxicity. Consequently, this promoted the growth and metastasis of HCC. In summary, our study affirms that IL34+ CAFs play a pivotal role in augmenting the proliferative activity of CAFs, facilitating Tregs infiltration, and inhibiting CD8+ T cell toxicity, ultimately fostering the growth and metastasis of HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
7
|
Wu X, Lu W, Zhang W, Zhang D, Mei H, Zhang M, Cui Y, Zhuo Z. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels the heterogeneity of cancer-associated fibroblasts in TNBC. Aging (Albany NY) 2023; 15:12674-12697. [PMID: 37963845 PMCID: PMC10683606 DOI: 10.18632/aging.205205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The treatment of triple-negative breast cancer (TNBC) is one of the main focuses and key difficulties because of its heterogeneity, and the source of this heterogeneity is unclear. METHODS Single-cell RNA (scRNA) and transcriptomics data of TNBC and normal breast samples were retrieved from Gene Expression Omnibus (GEO) database and TCGA-BRCA database. These cells were clustered using the t-SNE and UMAP method, and the marker genes for each cluster were found. We annotated the clusters using the published literature, CellMarker database and "SingleR" R package. RESULTS A total of 1535 cells and 21785 genes from 6 TNBC patients and 2068 cells and 15868 genes from 3 normal breast tissues were used for downstream analyses. The scRNA data were divided into 14 clusters labeled into 8 cell types, including epithelial cells, immunocytes, CAFs/fibroblasts and etc. In the TNBC samples, CAFs were divided into three clusters and labelled as prCAFs, myCAFs and emCAFs, and the marker genes were DCN, FAP and RGS5, respectively. The prCAF subgroup is functionally characterized by promoting proliferation and multi drug resistance; myCAF subgroup is involved in constituting the extracellular matrix and collagen production, matrix composition and collagen production, and the emCAF functionally characterized by energy metabolism. CONCLUSIONS TNBC has inter- and intra-tumor heterogeneity, and CAF is one of the sources of this heterogeneity. CD74, SASH3, CD2, TAGAP and CCR7 served as significant marker genes with prognostic and therapeutic value.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Wenping Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Weixuan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Dongni Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Heting Mei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Mengfan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Yongjia Cui
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Zhili Zhuo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| |
Collapse
|
8
|
Huang T, Lu C, Zhang Y, Lin BY, Zhang ZJ, Zhu D, Wang L, Lu Y. Effect of activating cancer-associated fibroblasts biomarker TNC on immune cell infiltration and prognosis in breast cancer. Ann Med 2023; 55:2250987. [PMID: 38375814 PMCID: PMC10629425 DOI: 10.1080/07853890.2023.2250987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most important components of the tumor microenvironment (TME). CAFs are heterogeneous and involved in tumor tumorigenesis and drug resistance, contributing to TME remodeling and predicting clinical outcomes as prognostic factors. However, the effect of CAFs the TME and the prognosis of patients with breast cancer (BC) is not fully understood. This study investigated the correlation between CAFs-activating biomarkers immune cell infiltration and survival in patients with breast cancer. METHODS RNA sequencing data and survival information for patients with breast cancer were downloaded from The Cancer Genome Atlas (TCGA) using R software. We then analyzed the correlation between CAFs-expressing biomarkers and immune cells using the clusterProfiler package, and evaluated the prognostic role of appealing genes using the Survminer package. Immunohistochemical (IHC) staining was used to determine the expression levels of TNC in 160 breast cancer samples pathologically diagnosed as invasive ductal carcinoma that were not otherwise specified (IDC-NOS). RESULTS Data analysis showed that CAFs-expressing genes was higher than in normal tissues (p < 0.05). Pathway enrichment revealed that the overexpression of CAFs-related genes was mainly enriched in the focal adhesion and phosphoinositol-3 kinase-serine/threonine kinase (PI3K-AKT) signaling pathways. Immune infiltration analysis suggested that high expression of CAFs-related genes was significantly positively correlated with the infiltration of naive B cells and resting dendritic cells and inversely correlated with macrophages cell infiltration. In addition, high TNC expression in tumor cells was associated with the most adverse clinicopathological features and reduced metastasis-free survival (MFS) (hazard ratio (HR) 0.574, 95% confidence interval (CI) 0.404-0.815, p = 0.035). CONCLUSIONS This study found that CAFs may participate in immunosuppression and regulate tumor cell proliferation and invasion. High TNC expression is associated with several adverse clinicopathological features, and high TNC expression in tumor cells has been identified as an independent prognostic factor for IDC-NOS.
Collapse
Affiliation(s)
- Ting Huang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cheng Lu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ying Zhang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bi-yun Lin
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhe-jun Zhang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Ren Q, Zhang P, Zhang X, Feng Y, Li L, Lin H, Yu Y. A fibroblast-associated signature predicts prognosis and immunotherapy in esophageal squamous cell cancer. Front Immunol 2023; 14:1199040. [PMID: 37313409 PMCID: PMC10258351 DOI: 10.3389/fimmu.2023.1199040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Background Current paradigms of anti-tumor therapies are not qualified to evacuate the malignancy ascribing to cancer stroma's functions in accelerating tumor relapse and therapeutic resistance. Cancer-associated fibroblasts (CAFs) has been identified significantly correlated with tumor progression and therapy resistance. Thus, we aimed to probe into the CAFs characteristics in esophageal squamous cancer (ESCC) and construct a risk signature based on CAFs to predict the prognosis of ESCC patients. Methods The GEO database provided the single-cell RNA sequencing (scRNA-seq) data. The GEO and TCGA databases were used to obtain bulk RNA-seq data and microarray data of ESCC, respectively. CAF clusters were identified from the scRNA-seq data using the Seurat R package. CAF-related prognostic genes were subsequently identified using univariate Cox regression analysis. A risk signature based on CAF-related prognostic genes was constructed using Lasso regression. Then, a nomogram model based on clinicopathological characteristics and the risk signature was developed. Consensus clustering was conducted to explore the heterogeneity of ESCC. Finally, PCR was utilized to validate the functions that hub genes play on ESCC. Results Six CAF clusters were identified in ESCC based on scRNA-seq data, three of which had prognostic associations. A total of 642 genes were found to be significantly correlated with CAF clusters from a pool of 17080 DEGs, and 9 genes were selected to generate a risk signature, which were mainly involved in 10 pathways such as NRF1, MYC, and TGF-Beta. The risk signature was significantly correlated with stromal and immune scores, as well as some immune cells. Multivariate analysis demonstrated that the risk signature was an independent prognostic factor for ESCC, and its potential in predicting immunotherapeutic outcomes was confirmed. A novel nomogram integrating the CAF-based risk signature and clinical stage was developed, which exhibited favorable predictability and reliability for ESCC prognosis prediction. The consensus clustering analysis further confirmed the heterogeneity of ESCC. Conclusion The prognosis of ESCC can be effectively predicted by CAF-based risk signatures, and a comprehensive characterization of the CAF signature of ESCC may aid in interpreting the response of ESCC to immunotherapy and offer new strategies for cancer treatment.
Collapse
Affiliation(s)
- Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Li
- Department of Thoracic Surgery, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Tamaddon M, Azimzadeh M, Gifani P, Tavangar SM. Single-cell transcriptome analysis for cancer and biology of the pancreas: A review on recent progress. Front Genet 2023; 14:1029758. [PMID: 37091793 PMCID: PMC10115972 DOI: 10.3389/fgene.2023.1029758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Single-cell sequencing has become one of the most used techniques across the wide field of biology. It has enabled researchers to investigate the whole transcriptome at the cellular level across tissues, which unlocks numerous potentials for basic and applied studies in future diagnosis and therapy. Here, we review the impact of single-cell RNA sequencing, as the prominent single-cell technique, in pancreatic biology and cancer. We discuss the most recent findings about pancreatic physiology and pathophysiology owing to this technological advancement in the past few years. Using single-cell RNA sequencing, researchers have been able to discover cellular heterogeneity across healthy cell types, as well as cancer tissues of the pancreas. We will discuss the new immunological targets and new molecular mechanisms of progression in the microenvironment of pancreatic cancer studied using single-cell RNA sequencing. The scope is not limited to cancer tissues, and we cover novel developmental, evolutionary, physiological, and heterogenic insights that have also been achieved recently for pancreatic tissues. We cover all biological insights derived from the single-cell RNA sequencing data, discuss the corresponding pros and cons, and finally, conclude how future research can move better by utilizing single-cell analysis for pancreatic biology.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Peyman Gifani
- AI VIVO Ltd., Bioinnovation Centre, Cambridge, United Kingdom
- Genetic Department, Institute of Systems Biology, University of Cambridge, Cambridge, United Kingdom
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Seyed Mohammad Tavangar,
| |
Collapse
|
11
|
Yu L, Shen N, Shi Y, Shi X, Fu X, Li S, Zhu B, Yu W, Zhang Y. Characterization of cancer-related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front Immunol 2022; 13:1009789. [PMID: 36211448 PMCID: PMC9537943 DOI: 10.3389/fimmu.2022.1009789] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 12/09/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are involved in tumor growth, angiogenesis, metastasis, and resistance to therapy. We sought to explore the CAFs characteristics in hepatocellular carcinoma (HCC) and establish a CAF-based risk signature for predicting the prognosis of HCC patients. Methods The signal-cell RNA sequencing (scRNA-seq) data was obtained from the GEO database. Bulk RNA-seq data and microarray data of HCC were obtained from the TCGA and GEO databases respectively. Seurat R package was applied to process scRNA-seq data and identify CAF clusters according to the CAF markers. Differential expression analysis was performed to screen differentially expressed genes (DEGs) between normal and tumor samples in TCGA dataset. Then Pearson correlation analysis was used to determine the DEGs associated with CAF clusters, followed by the univariate Cox regression analysis to identify CAF-related prognostic genes. Lasso regression was implemented to construct a risk signature based on CAF-related prognostic genes. Finally, a nomogram model based on the risk signature and clinicopathological characteristics was developed. Results Based on scRNA-seq data, we identified 4 CAF clusters in HCC, 3 of which were associated with prognosis in HCC. A total of 423 genes were identified from 2811 DEGs to be significantly correlated with CAF clusters, and were narrowed down to generate a risk signature with 6 genes. These six genes were primarily connected with 39 pathways, such as angiogenesis, apoptosis, and hypoxia. Meanwhile, the risk signature was significantly associated with stromal and immune scores, as well as some immune cells. Multivariate analysis revealed that risk signature was an independent prognostic factor for HCC, and its value in predicting immunotherapeutic outcomes was confirmed. A novel nomogram integrating the stage and CAF-based risk signature was constructed, which exhibited favorable predictability and reliability in the prognosis prediction of HCC. Conclusion CAF-based risk signatures can effectively predict the prognosis of HCC, and comprehensive characterization of the CAF signature of HCC may help to interpret the response of HCC to immunotherapy and provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianghe Yu
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Ningjia Shen
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Yan Shi
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Xintong Shi
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Xiaohui Fu
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Shuang Li
- Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
| | - Bin Zhu
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Wenlong Yu
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clin Exp Med 2022:10.1007/s10238-022-00886-1. [DOI: 10.1007/s10238-022-00886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022]
|
13
|
Current Nano-Strategies to Target Tumor Microenvironment to Improve Anti-Tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Fong ELS, Iyer NG. Next generation in vitro tumor models guiding cancer therapy. Adv Drug Deliv Rev 2021; 179:114047. [PMID: 34763000 DOI: 10.1016/j.addr.2021.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
17
|
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA, Loots GG. Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051307. [PMID: 32455670 PMCID: PMC7281266 DOI: 10.3390/cancers12051307] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a prominent stromal cell type in solid tumors and molecules secreted by CAFs play an important role in tumor progression and metastasis. CAFs coexist as heterogeneous populations with potentially different biological functions. Although CAFs are a major component of the breast cancer stroma, molecular and phenotypic heterogeneity of CAFs in breast cancer is poorly understood. In this study, we investigated CAF heterogeneity in triple-negative breast cancer (TNBC) using a syngeneic mouse model, BALB/c-derived 4T1 mammary tumors. Using single-cell RNA sequencing (scRNA-seq), we identified six CAF subpopulations in 4T1 tumors including: 1) myofibroblastic CAFs, enriched for α-smooth muscle actin and several other contractile proteins; 2) ‘inflammatory’ CAFs with elevated expression of inflammatory cytokines; and 3) a CAF subpopulation expressing major histocompatibility complex (MHC) class II proteins that are generally expressed in antigen-presenting cells. Comparison of 4T1-derived CAFs to CAFs from pancreatic cancer revealed that these three CAF subpopulations exist in both tumor types. Interestingly, cells with inflammatory and MHC class II-expressing CAF profiles were also detected in normal breast/pancreas tissue, suggesting that these phenotypes are not tumor microenvironment-induced. This work enhances our understanding of CAF heterogeneity, and specifically targeting these CAF subpopulations could be an effective therapeutic approach for treating highly aggressive TNBCs.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-925-423-0923
| |
Collapse
|