1
|
Chen J, Yu B, Zhang S, Wang Z, Dai Y. Protective effect of luteinizing hormone on frozen-thawed ovarian follicles and granulosa cells. PLoS One 2025; 20:e0317416. [PMID: 39808671 PMCID: PMC11731763 DOI: 10.1371/journal.pone.0317416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles. This study examined mouse ovarian follicles and granulosa cells to identify optimal LH treatments using morphological assessments and LIVE/DEAD assays. The study found significant increases in the expression of Leucine-rich G-protein-coupled receptor 5 (Lgr5) and Forkhead box L2 (Foxl2) in mural and cumulus granulosa cells under LH influence, alongside marked reductions in active caspase-3 expression. Double immunofluorescence of Ki67 with Foxl2 and Lgr5 revealed ongoing proliferative activity in granulosa cells post freeze-thaw. In addition, LH treatment significantly boosted the expression of transforming growth factor (TGF-β) and its superfamily members in both granulosa cells and oocytes. These findings suggest that LH addition during cryopreservation can diminish damage to follicles and granulosa cells, offering new strategies to enhance the efficacy of mammalian ovarian cryopreservation.
Collapse
Affiliation(s)
- Jie Chen
- School of Life Science, Inner Mongolia University, Hohhot, PR China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, PR China
| | - Boyang Yu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, PR China
| | - Shengbo Zhang
- School of Life Science, Inner Mongolia University, Hohhot, PR China
| | - Zhikang Wang
- School of Life Science, Inner Mongolia University, Hohhot, PR China
| | - Yanfeng Dai
- School of Life Science, Inner Mongolia University, Hohhot, PR China
| |
Collapse
|
2
|
Yildiz Deniz G, Geyikoglu F, Altun S. The regulatory effects of pomiferin dietary on nickel-induced hepatic injury in Sprague-Dawley rats; action mechanisms and signaling pathways. Toxicol Mech Methods 2024; 34:484-494. [PMID: 38223921 DOI: 10.1080/15376516.2023.2301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The new technological applications of nickel (Ni) raise concerns over its harmful effects on the environment and human health. Pomiferin isolated from Osage orange is evaluated in in vitro and in vivo laboratory bioassays. This study focused the effects of pomiferin on Ni-caused hepatic injury and its underlying mechanisms. With this aim, Sprague-Dawley rats received 10 mg/kg nickel chloride (NiCl2) for 7 d by intraperitoneal injections. Pomiferin was given orally once a day at different doses (75, 150, and 300 mg/kg) for 20 d after exposure to NiCl2. Animals were anesthetized and livers were carefully collected to evaluate oxidative stress, inflammation, vascular injury, and hepatic function. Also, immunofluorescence analysis of apoptosis and DNA damage was performed on rat hepatic tissues. NiCl2 increased MDA production while reducing SOD, CAT, and GPx activity. NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue. Moreover, there were significant increases in AST, ALT, and LDH levels. NiCl2 also caused significant pathological changes in hepatic. Additionally, it remarkably induced up-regulations of apoptotic marker and 8-OHdG expressions by immunofluorescence labeling in liver cells. Whereas, pomiferin significantly attenuated lipid peroxidation and increased antioxidant defense system in liver. Also, the use of pomiferin prevented deregulated inflammatory process by signaling pathways nuclear factor kappa B (NFκB)/COX-2/TNF-α/IL-1β/IL-6. In addition, pomiferin diminished histopathologic evidence of hepatic toxicity and significantly lower expressions of caspase 3 and 8-OHdG were observed in liver cells. Pomiferin seems to counteract the deleterious effects of NiCl2 on hepatic tissue through different cellular and signaling mechanisms.
Collapse
Affiliation(s)
| | - Fatime Geyikoglu
- Biology Department, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Serdar Altun
- Pathology Department, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Barrientos-Bonilla AA, Pensado-Guevara PB, Puga-Olguín A, Nadella R, Sánchez-García ADC, Zavala-Flores LM, Villanueva-Olivo A, Cibrián-Llanderal IT, Rovirosa-Hernández MDJ, Hernandez-Baltazar D. BrdU does not induce hepatocellular damage in experimental Wistar rats. Acta Histochem 2024; 126:152117. [PMID: 38016413 DOI: 10.1016/j.acthis.2023.152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bromodeoxyuridine (BrdU) is used in studies related to cell proliferation and neurogenesis. The multiple intraperitoneal injections of this molecule could favor liver function profile changes. In this study, we evaluate the systemic and hepatocellular impact of BrdU in male adult Wistar rats in 30 %-partial hepatectomy (PHx) model. The rats received BrdU 50 mg/Kg by intraperitoneal injection at 0.5, 1, 2, 3, 6, 9 and 16 days after 30 %-PH. The rats were distributed into four groups as follows, control, sham, PHx/BrdU(-) and PHx/BrdU(+). On day 16, we evaluated hepatocellular nuclei and analyzed histopathological features by haematoxylin-eosin stain and apoptotic profile was qualified by caspase-3 presence. The systemic effect was evaluated by liver markers such as alanine transferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (AP), bilirubin, total proteins and serum albumin content. The statistical analysis consisted of a student t-test and one-way ANOVA. BrdU did not induce apoptosis or hepatocellular damage in male rats. Multiple administrations of BrdU in male rats did not induce significant decrease body weight, but increased serum ALT and LDH levels were found. Our results show that the BrdU does not produce hepatocellular damage.
Collapse
Affiliation(s)
| | | | - Abraham Puga-Olguín
- Unidad de Salud Integrativa, Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | | - Arnulfo Villanueva-Olivo
- Departamento de Histología. Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | - Daniel Hernandez-Baltazar
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Investigadoras e investigadores por México CONAHCyT-Instituto de Neuroetología, Universidad Veracruzana, Mexico.
| |
Collapse
|
4
|
Wang Y, Piao C, Liu T, Lu X, Ma Y, Zhang J, Liu G, Wang H. Effects of the exosomes of adipose-derived mesenchymal stem cells on apoptosis and pyroptosis of injured liver in miniature pigs. Biomed Pharmacother 2023; 169:115873. [PMID: 37979374 DOI: 10.1016/j.biopha.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a complication of hepatectomy that affects the functional recovery of the remnant liver, which has been demonstrated to be associated with pyroptosis and apoptosis. Mesenchymal stem cells (MSCs) can protect against HIRI in rodents. Paracrine mechanisms of MSCs indicated that MSCs-derived exosomes (MSCs-exo) are one of the important components within the paracrine substances of MSCs. Moreover, miniature pigs are ideal experimental animals in comparative medicine compared to rodents. Accordingly, this study aimed to investigate whether hepatectomy combined with HIRI in miniature pigs would induce pyroptosis and whether adipose-derived MSCs (ADSCs) and their exosomes (ADSCs-exo) could positively mitigate apoptosis and pyroptosis. The study also compared the differences in the effects and the role of ADSCs and ADSCs-exo in pyroptosis and apoptosis. Results showed that severe ultrastructure damage occurred in liver tissues and systemic inflammatory response was induced after surgery, with TLR4/MyD88/NFκB/HMGB1 activation, NLRP3-ASC-Caspase1 complex generation, GSDMD revitalization, and IL-1β, IL-18, and LDH elevation in the serum. Furthermore, expression of Fas-Fasl-Caspase8 and CytC-APAF1-Caspase9 was increased in the liver. The ADSCs or ADSCs-exo intervention could inhibit the expression of these indicators and improve the ultrastructural pathological changes and systemic inflammatory response. There was no significant difference between the two intervention groups. In summary, ADSCs-exo could effectively inhibit pyroptosis and apoptosis similar to ADSCs and may be considered a safe and effective cell-free therapy to protect against liver injury.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guodong Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Emodin Regulates lncRNA XIST/miR-217 Axis to Protect Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3612814. [PMID: 36760350 PMCID: PMC9904883 DOI: 10.1155/2023/3612814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Purpose This study is aimed at investigating the effect of emodin on myocardial ischemia-reperfusion injury (MIRI) and mechanism. Methods Eighty healthy adult male SD rats (weighing 230-250 g) were utilized to establish I/R model, which were randomly divided into five groups (16 rats in each group): sham operation group, myocardial ischemia-reperfusion injury group (I/R group), emodin group, emodin +NC group, and emodin +XIST group. The contents of CK, CK-MB, LDH, and HBDH in serum were determined by ELISA kit. LDH was detected by ELISA assay, SOD was detected by the xanthine oxidase method, and MDA was detected by the thiobarbituric acid method. The relative expression of XIST and miR-217 was evaluated by RT-qPCR. Western blot was applied to detect the protein expression. Flow cytometry was applied to detect cardiomyocyte apoptosis. Results Myocardial infarction area was obviously increased in I/R model rats, while emodin decreased the myocardial infarction in I/R model rats. In addition, cardiac enzymes (CK, CK-MB, LDH, and HBDH) and apoptosis were obviously increased in MIRI model rats, while emodin obviously decreased cardiac enzymes and apoptosis. The ROS and MDA levels were raised while the activities of SOD were declined in the I/R model group. The ROS and MDA levels were decreased while the activities of SOD were raised in the emodin group. The XIST expression was markedly raised in the I/R model group while decreased in the emodin group, and the overexpression of XIST reversed the protective effect of emodin on myocardial infarction, oxidative stress, and cardiomyocyte apoptosis. In addition, XIST directly regulated the expression of miR-217, and si-XIST inhibited H/R-induced oxidative damage of cardiomyocytes via inhibiting miR-217. Conclusion Emodin protected MIRI both in vitro and in vivo via inhibiting lncRNA XIST to upregulate miR-217.
Collapse
|
6
|
Zamora-Bello I, Hernandez-Baltazar D, Rodríguez-Landa JF, Rivadeneyra-Domínguez E. Optimizing rat and human blood cells sampling for in silico morphometric analysis. Acta Histochem 2022; 124:151917. [PMID: 35716583 DOI: 10.1016/j.acthis.2022.151917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Measurements of Morphometric Parameters of the Blood Cells (MPBC) are key for the diagnosis of both mental and metabolic diseases. Several manual approaches or computational methodologies are useful to provide reliable clinical diagnosis. The sample processing and data analysis is relevant, however the sample handling on the pre-analytical phase remains scarcely evaluated. The main goal of this study was to favor the preservation of blood smear using a histological resin. This strategy lead us two practical approaches, give a detailed morphometric description of white blood cells and establish reference intervals in male Wistar rats, which are scarcely reported. Blood smears from male Wistar rats (n = 120) and adult men were collected at room temperature. The integrity of Wright-stained cells was evaluated by an in silico image analysis from rat and human blood smear preserved with a toluene-based synthetic resin mounting medium. A single sample of human blood was used as a control of procedure. The reference intervals was established by cell counting. Based on the results of segmentation algorithm followed by an automatic thresholding analysis, the incorporation of resin favor the conservation of cell blood populations, and lead to identify morphologic features such as nucleus/cytoplasmic shape, granules presence and DNA appearance in nucleus of white blood cells. The use of a histological resin could favor a fast and efficient sample handling in silico MPBC measurements both in the species studied as in wild animals.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - Daniel Hernandez-Baltazar
- Investigadoras e investigadores por México. Consejo Nacional de Ciencia y Tecnología (CONACyT), CDMX, Mexico; Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | | | | |
Collapse
|