1
|
Cheng CY, Chen YL, Ho H, Huang CY, Chu SE, Liang YJ. Prognostic Significance of DNAJB4 Expression in Gastric Cancer: Correlation with CD31, Caspase-3, and Tumor Progression. Diagnostics (Basel) 2025; 15:652. [PMID: 40149995 PMCID: PMC11941126 DOI: 10.3390/diagnostics15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Gastric cancer is one of the most common and lethal cancers worldwide, with particularly high incidence and mortality rates in East Asia and Europe. DNAJB4 has been shown to have prognostic implications in other cancer types; however, its expression patterns and role in gastric cancer have not been extensively studied. This study aimed to analyze DNAJB4 expression in gastric cancer and explore its association with clinical characteristics, molecular markers, and patient outcomes. Methods: We selected suitable tumor samples from 189 gastric cancer patients who had not undergone chemotherapy or radiotherapy, with 188 patients ultimately included in the analysis. Tissue microarray and immunohistochemistry were used to evaluate DNAJB4 expression, and the samples were divided into high- and low-expression groups based on the H-score. Multivariate logistic regression and survival analysis were conducted to identify influencing factors. Results: High DNAJB4 expression was significantly correlated with increased CD31 levels but was inversely associated with advanced cancer stages. Subgroup analysis revealed that in patients with advanced gastric cancer, high DNAJB4 expression was associated with increased caspase-3 levels and with elevated CD31 and decreased E-cadherin levels. Conclusions: High DNAJB4 expression was associated with both angiogenesis and apoptosis, indicating its complex role in gastric cancer progression. Although DNAJB4 promoted angiogenesis by increasing CD31 levels, it may also enhance apoptosis in tumor cells through caspase-3-induced apoptosis.
Collapse
Affiliation(s)
- Chiao-Yin Cheng
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242062, Taiwan; (C.-Y.C.); (C.-Y.H.)
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan; (H.H.); (S.-E.C.)
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan;
| | - Hua Ho
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan; (H.H.); (S.-E.C.)
| | - Chun-Yen Huang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242062, Taiwan; (C.-Y.C.); (C.-Y.H.)
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan; (H.H.); (S.-E.C.)
| | - Sheng-En Chu
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan; (H.H.); (S.-E.C.)
- Department of Emergency Medicine, National Taiwan University Hospital, Yun-Lin Branch, Douliu City 640203, Taiwan
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242062, Taiwan; (C.-Y.C.); (C.-Y.H.)
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei 242062, Taiwan
| |
Collapse
|
2
|
Lee YS, Mun JG, Park SY, Hong DY, Kim HY, Kim SJ, Lee SB, Jang JH, Han YH, Kee JY. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024; 16:1844. [PMID: 38931199 PMCID: PMC11206761 DOI: 10.3390/nu16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.
Collapse
Affiliation(s)
- Yoon-Seung Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Shin-Young Park
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dah Yun Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ho-Yoon Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Su-Jin Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sun-Bin Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Ho Jang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Yo-Han Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Shen JJ, Xue SJ, Mei ZH, Li TT, Li HF, Zhuang XF, Pan LM. Synthesis, characterization, and efficacy evaluation of a PH-responsive Fe-MOF@GO composite drug delivery system for the treating colorectal cancer. Heliyon 2024; 10:e28066. [PMID: 38524612 PMCID: PMC10957435 DOI: 10.1016/j.heliyon.2024.e28066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Luteolin is a potent anti-colorectal cancer chemical. However, its effectiveness is hindered by its poor solubility in water and fat, and it is easy to degrade by gastrointestinal enzymes. In this study, a nano-composite carrier, NH2-MIL-101(Fe)@GO (MG), based on aminated MIL-101(Fe) and graphene oxide (GO) was developed and evaluated. This carrier co-delivered luteolin and matrine, while marine was used to balance the pH for the nano-preparation. The loading capacities for luteolin and matrine were approximately 9.8% and 14.1%, respectively. Luteolin's release at pH = 5 was significantly higher than at pH = 7.4, indicating it had an acidic pH response release characteristic. Compared to MOF and GO alone, MG and NH2-MIL-101(Fe)@GO@Drugs (MGD) enhanced anti-cancer activity by inhibiting tumor cell migration, increasing ROS generation, and upregulating the expression of Caspase-3 and Caspase-9. In conclusion, this study contributes new ideas and methods to the treatment strategy of multi-component anti-colorectal cancer therapy. It also advances drug delivery systems and supports the development of more effective and targeted treatment approaches for colorectal cancer.
Collapse
Affiliation(s)
- Jia-Jie Shen
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Jiao Xue
- Qidong Hospital of Traditional Chinese Medicine, Nantong, 226200, China
| | - Zhang-Hao Mei
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ting-Ting Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Fen Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fei Zhuang
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin-Mei Pan
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
4
|
Kocaağa N, Türkkol A, Bilgin MD, Erdoğmuş A. The synthesis of novel water-soluble zinc (II) phthalocyanine based photosensitizers and exploring of photodynamic therapy activities on the PC3 cancer cell line. Photochem Photobiol Sci 2023; 22:2037-2053. [PMID: 37166570 DOI: 10.1007/s43630-023-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
In this study, Schiff base substituted phthalocyanine complexes (Zn1c, Zn2c) and their quaternized derivatives (Q-Zn1c, Q-Zn2c) were synthesized for the first time. Their structures have been characterized by FT-IR, 1H-NMR, UV-Vis, mass spectrometry and elemental analysis as well as. The photophysicochemical properties (fluorescence, singlet oxygen and photodegradation quantum yield) of these novel complexes were investigated in dimethylsulfoxide (DMSO) for both non-ionic and quaternized cationic phthalocyanine complexes and in aqueous solution for quaternized cationic phthalocyanine complexes. Water soluble cationic phthalocyanine compounds gave good singlet oxygen quantum yield (0.65 for Q-Zn1c, 0.66 for Q-Zn2c in DMSO; 0.65 for Q-Zn2c in aqueous solution). The binding of Q-Zn1c and Q-Zn2c to BSA/DNA was studied by using UV-Vis and fluorescence spectroscopy and these. Studies indicate that the mechanism of BSA quenching by quaternized zinc(II) phthalocyanines was static quenching. Quaternized zinc(II) phthalocyanines interacted with ct-DNA by intercalation. Quaternized zinc(II) phthalocyanines caused a decrease in cell viability and triggered apoptotic cell death after PDT was applied at a concentration that did not have a toxic effect on their own. Q-Zn1c and Q-Zn2c mediated PDT reduced the activity of SOD, CAT, GSH while increased MDA level in the prostate cancer cells. Furthermore, expression of apoptotic proteins after PDT was examined. The results revealed that the synthesized water soluble quaternized zinc(II) phthalocyanine complexes (Q-Zn1c and Q-Zn2c) are promising potential photosensitizers for PDT.
Collapse
Affiliation(s)
- Nagihan Kocaağa
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Ayşegül Türkkol
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey
| | - Mehmet Dinçer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, 34210, Turkey.
| |
Collapse
|