1
|
Najary S, Nokhbatolfoghahaei H, Khojasteh A. The effect of Hypoxia-Inducible Factor-1a stabilization on bone regeneration during distraction osteogenesis: A systematic review of animal studies. Arch Oral Biol 2025; 172:106184. [PMID: 39893997 DOI: 10.1016/j.archoralbio.2025.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE This systematic review described Hypoxia-Inducible Factor-1a stabilization or upregulation approaches along with underlying signaling pathways and assessed bone regeneration, angiogenesis, and consolidation time during DO in animal models. DESIGN A comprehensive and systematic search of electronic databases including PubMed, Scopus, and ScienceDirect was performed till December 26, 2023. The search was limited to English articles, and no time restrictions were applied. RESULTS A total of 14 studies met the inclusion criteria and were included for final review. Four methods have been shown to activate the HIF pathway including genetic, pharmacological, mechanical, and cell preconditioning approaches. Deferoxamine (DFO) was administered as a pharmacological hypoxia-mimicking agent in many studies reporting acceptable outcomes on bone regeneration and acceleration of bone consolation. Applying mechanical loads at the optimal rate and amplitude serves as a minimally invasive approach with acceptable results. HIF-related signaling pathways increase osteogenesis and angiogenesis during DO, potentially through VHL/HIF-1a/VEGF, Wnt/β-catenin, and Mesenchymal-Epithelial transition (MET) signaling pathways. CONCLUSION Activation of HIF-related signaling pathways enhances and accelerates bone regeneration during the consolidation phase of distraction osteogenesis. The most feasible approach with the least side effects must be selected for further clinical studies.
Collapse
Affiliation(s)
- Shaghayegh Najary
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Flores-García LC, García-Castillo V, Pérez-Toledo E, Trujano-Camacho S, Millán-Catalán O, Pérez-Yepez EA, Coronel-Hernández J, Rodríguez-Dorantes M, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer. Cells 2025; 14:388. [PMID: 40072116 PMCID: PMC11898799 DOI: 10.3390/cells14050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis. Our results demonstrated the regulatory effect of HOTAIR on the expression of glycolysis and glutaminolysis enzymes in colorectal cancer cells. Specifically, through the overexpression and inhibition of HOTAIR, we determined its influence on the expression of the enzymes PFKFB4, PGK1, LDHA, SLC1A5, GLUD1, and GOT1, which had a direct impact on lactate and glutamate production. These findings indicate that HOTAIR plays a significant role in producing "oncometabolites" essential to maintaining the bioenergetics and biomass necessary for tumor cell survival by regulating glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Laura Cecilia Flores-García
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Eduardo Pérez-Toledo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Eloy Andrés Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| |
Collapse
|
3
|
Gao X, Pang C, Fan Z, Wang Y, Duan Y, Zhan H. Regulation of newly identified lysine lactylation in cancer. Cancer Lett 2024; 587:216680. [PMID: 38346584 DOI: 10.1016/j.canlet.2024.216680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Metabolic reprogramming is a typical hallmark of cancer. Enhanced glycolysis in tumor cells leads to the accumulation of lactate, which is traditionally considered metabolic waste. With the development of high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), the lactate-derived, lysine lactylation(Kla), has been identified. Kla can alter the spatial configuration of chromatin and regulate the expression of corresponding genes. Metabolic reprogramming and epigenetic remodeling have been extensively linked. Accumulating studies have subsequently expanded the framework on the key roles of this protein translational modification (PTM) in tumors and have provided a new concept of cancer-specific regulation by Kla.
Collapse
Affiliation(s)
- Xin Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Chaoyu Pang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
4
|
Negri AL. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin Kidney J 2022; 16:205-209. [PMID: 36755843 PMCID: PMC9900523 DOI: 10.1093/ckj/sfac224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Morbidity and mortality of chronic kidney disease (CKD) patients are largely associated with vascular calcification, an actively regulated process in which vascular smooth muscle cells (VSMCs) change into cells similar to osteocytes/chondrocytes, known as trans-differentiation. Cellular and systemic response to low oxygen (hypoxia) is regulated by the prolyl hydroxylase/hypoxia-inducible factor (HIF)-1 pathway. Recent studies highlighted that hypoxia-mediated activation of HIF-1 induces trans-differentiation of VSMCs into bone-forming type through an increase in osteo-/chondrogenic genes. Inhibition of the HIF-1 pathway abolished osteochondrogenic differentiation of VSMCs. Hypoxia strongly enhanced elevated phosphate-induced VSMC osteogenic trans-differentiation and calcification. HIF-1 was shown to be essential for phosphate enhanced VSMC calcification. O2-dependent degradation HIF-1 is triggered by the prolyl hydroxylase domain proteins (PHD). Prolyl hydroxylase inhibitors, daprodustat and roxadustat, increase high phosphate-induced VC in VSMCs, stabilizing HIF-1α and activating the HIF-1 pathway in these cells. Whether the use of these PHD inhibitors to treat anemia in CKD patients will favor the development and progression of vascular calcification remains to be explored.
Collapse
|
5
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|