1
|
Swift LM, Burke M, Guerrelli D, Reilly M, Ramadan M, McCullough D, Prudencio T, Mulvany C, Chaluvadi A, Jaimes R, Posnack NG. Age-dependent changes in electrophysiology and calcium handling: implications for pediatric cardiac research. Am J Physiol Heart Circ Physiol 2019; 318:H354-H365. [PMID: 31886723 DOI: 10.1152/ajpheart.00521.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling. To test this hypothesis, we employed multiparametric imaging and electrophysiological techniques to quantify developmental changes from neonate to adult. In vivo electrocardiograms were collected to assess changes in heart rate, variability, and atrioventricular conduction (Sprague-Dawley rats). Intact, whole hearts were transferred to a Langendorff-perfusion system for multiparametric imaging (voltage, calcium). Optical mapping was performed in conjunction with an electrophysiology study to assess cardiac dynamics throughout development. Postnatal age was associated with an increase in the heart rate (181 ± 34 vs. 429 ± 13 beats/min), faster atrioventricular conduction (94 ± 13 vs. 46 ± 3 ms), shortened action potentials (APD80: 113 ± 18 vs. 60 ± 17 ms), and decreased ventricular refractoriness (VERP: 157 ± 45 vs. 57 ± 14 ms; neonatal vs. adults, means ± SD, P < 0.05). Calcium handling matured with development, resulting in shortened calcium transient durations (168 ± 18 vs. 117 ± 14 ms) and decreased propensity for calcium transient alternans (160 ± 18- vs. 99 ± 11-ms cycle length threshold; neonatal vs. adults, mean ± SD, P < 0.05). Results of this study can serve as a comprehensive baseline for future studies focused on pediatric disease modeling and/or preclinical testing.NEW & NOTEWORTHY This is the first study to assess cardiac electrophysiology and calcium handling throughout postnatal development, using both in vivo and whole heart models.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Morgan Burke
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Colm Mulvany
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Ashika Chaluvadi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia.,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia.,Department of Pediatrics and Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| |
Collapse
|
2
|
Haverinen J, Hassinen M, Dash SN, Vornanen M. Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels. ACTA ACUST UNITED AC 2018; 221:jeb.179226. [PMID: 29739832 DOI: 10.1242/jeb.179226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
Calcium channels are necessary for cardiac excitation-contraction (E-C) coupling, but Ca2+ channel composition of fish hearts is still largely unknown. To this end, we determined transcript expression of Ca2+ channels in the heart of zebrafish (Danio rerio), a popular model species. Altogether, 18 Ca2+ channel α-subunit genes were expressed in both atrium and ventricle. Transcripts for 7 L-type (Cav1.1a, Cav1.1b, Cav1.2, Cav1.3a, Cav1.3b, Cav1.4a, Cav1.4b), 5 T-type (Cav3.1, Cav3.2a, Cav3.2b, Cav3.3a, Cav3.3b) and 6 P/Q-, N- and R-type (Cav2.1a, Cav2.1b, Cav2.2a, Cav2.2b, Cav2.3a, Cav2.3b) Ca2+ channels were expressed. In the ventricle, T-type channels formed 54.9%, L-type channels 41.1% and P/Q-, N- and R-type channels 4.0% of the Ca2+ channel transcripts. In the atrium, the relative expression of T-type and L-type Ca2+ channel transcripts was 64.1% and 33.8%, respectively (others accounted for 2.1%). Thus, at the transcript level, T-type Ca2+ channels are prevalent in zebrafish atrium and ventricle. At the functional level, peak densities of ventricular T-type (ICaT) and L-type (ICaL) Ca2+ current were 6.3±0.8 and 7.7±0.8 pA pF-1, respectively. ICaT mediated a sizeable sarcolemmal Ca2+ influx into ventricular myocytes: the increment in total cellular Ca2+ content via ICaT was 41.2±7.3 µmol l-1, which was 31.7% of the combined Ca2+ influx (129 µmol l-1) via ICaT and ICaL (88.5±20.5 µmol l-1). The diversity of expressed Ca2+ channel genes in zebrafish heart is high, but dominated by the members of the T-type subfamily. The large ventricular ICaT is likely to play a significant role in E-C coupling.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Surjya Narayan Dash
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland.,Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, PO Box 63, 00014 Helsinki, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|