1
|
Kosanam S, Pasupula R. Effect of Methyl Glycoside on Apoptosis and Oxidative Stress in Hypoxia Induced-Reoxygenated H9C2 Cell Lines. Cell Biochem Biophys 2025; 83:1045-1056. [PMID: 39292425 DOI: 10.1007/s12013-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on key genes (Caspase-3, JAK2, BCL2L1 and MAPK8) and their modulation in response to hypoxia-induced stress using Methyl Glycoside (MG), a small molecule spectroscopically screened from Aganosma dichotoma. Hypoxia/reoxygenation (H/R) induced H9C2 cells, pre- treated with MG, were subjected to cell viability assay, free radical scavenging activities (catalase, GST, GSH-Px, SOD), caspase activity, mitochondrial membrane potential, and gene expression profiling through standard assays and molecular techniques. Results indicated that MG treatment, has potential protective effects against H/R induced stress in H9C2 cell lines. Cell viability assays showed that MG maintained cellular viability with significant protection (P < 0.05) observed from 10 µM. Free radical scavenging assays revealed that MG, enhanced detoxification mechanisms and exhibited potential antioxidant effect in a significantly (P < 0.05) in a dose dependant manner. MG pre-treatment in H9C2 cells protected cellular damage from caspase activity, cells exhibited high mitochondrial membrane potential, and gene expression profiles, including upregulation of anti-apoptotic BCL2L1 and modulation of stress-responsive genes like CASP3, JAK2 and MAPK8. Hence, MG exhibited concentration-dependent protective effects on viability, oxidative stress, and apoptosis-related pathways, laying the foundation for further exploration and translational applications in cardiovascular interventions.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
2
|
Candreva A, Gotschy A, Stehli J, Bissig L, Lodi Rizzini M, Chiastra C, Gallo D, Morbiducci U, Klingenberg R, Heg D, Matter CM, Ruschitzka F, Manka R, Stähli BE. Microcirculatory Resistance After Primary Percutaneous Coronary Intervention Predicts Residual Myocardial Damage and Scar Formation. J Am Heart Assoc 2025; 14:e036033. [PMID: 39921502 PMCID: PMC12074727 DOI: 10.1161/jaha.124.036033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/07/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Coronary microvascular dysfunction has been associated with adverse cardiovascular events following acute myocardial infarction. This study evaluates the role of the angiography-derived index of microcirculatory resistance (angio-IMR) in predicting myocardial damage in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention (PCI). METHODS AND RESULTS In this post hoc analysis of the CLEVER-ACS (Controlled-Level Everolimus in Acute Coronary Syndromes) trial, the associations between post-PCI angio-IMR of infarct-related coronary arteries (IRAs) and infarct size, microvascular obstruction, and left ventricular ejection fraction at 30 days as assessed by cardiac magnetic resonance were investigated. High post-PCI angio-IMR was defined as ≥40 mm Hg*s . In non-IRAs, angio-IMR was measured before IRA-PCI. A total of 52 IRAs and 94 non-IRAs of 52 patients were analyzed. Post-PCI angio-IMR was 41.5 (interquartile range [IQR], 28.5-55.7) mm Hg*s in IRAs and pre-PCI angio-IMR was 43.7 (IQR, 31.7-54.0) mm Hg*s in non-IRAs (P=0.70). Patients with high post-PCI angio-IMR (52%) exhibited a larger myocardial infarct size (36.0 [IQR, 23.0-52.5] g versus 14.5 [IQR, 6.50-26.5] g, P<0.001) and a lower left ventricular ejection fraction (46.5% [IQR, 39.5%-49.5%] versus 55.0% [IQR, 48.0%-61.4%], P=0.002) at 30 days as compared with those with low post-PCI angio-IMR values. Post-PCI angio-IMR positively correlated with myocardial infarct size (r=0.45, P=0.001) and extent of microvascular obstruction (r=0.40, P=0.004) at 30 days. Post-PCI angio-IMR predicted myocardial infarct size (area under the curve, 0.78 [IQR, 0.65-0.92]; P=0.001) and extent of microvascular obstruction (area under the curve, 0.74 [IQR, 0.60-0.89]; P=0.009) at 30 days. CONCLUSIONS In patients with ST-segment-elevation myocardial infarction, post-PCI angio-IMR was identified as independent predictor of myocardial infarct size and extent of microvascular obstruction. REGISTRATION URL: https://clinicaltrials.gov; Unique Identifier: NCT01529554.
Collapse
Affiliation(s)
- Alessandro Candreva
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
- Polito Med Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Alexander Gotschy
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Julia Stehli
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Lea Bissig
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Maurizio Lodi Rizzini
- Polito Med Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Claudio Chiastra
- Polito Med Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Diego Gallo
- Polito Med Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Umberto Morbiducci
- Polito Med Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Roland Klingenberg
- Kerckhoff Heart and Thorax Center, Department of Cardiology, Kerckhoff‐KlinikCampus of the Justus Liebig University of GiessenGiessenGermany
| | - Dik Heg
- Department of Clinical ResearchUniversity of BernBernSwitzerland
| | - Christian M. Matter
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Robert Manka
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Barbara E. Stähli
- Department of Cardiology, University Heart Center, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2371-2395. [PMID: 39387118 PMCID: PMC11602387 DOI: 10.1161/atvbaha.124.319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiovascular disease (CVD) remains a major health burden despite significant therapeutic advances accomplished over the last decades. It is widely and increasingly recognized that systemic inflammation not only represents a major cardiovascular risk and prognostic factor but also plays key pathogenic roles in CVD development and progression. Despite compelling preclinical evidence suggesting large potential of anti-inflammatory pharmacological interventions across numerous CVDs, clinical translation remains incomplete, mainly due to (1) yet undefined molecular signaling; (2) challenges of safety and efficacy profile of anti-inflammatory drugs; and (3) difficulties in identifying optimal patient candidates and responders to anti-inflammatory therapeutics, as well as optimal therapeutic windows. Randomized controlled trials demonstrated the safety/efficacy of canakinumab and colchicine in secondary cardiovascular prevention, providing confirmation for the involvement of a specific inflammatory pathway (NLRP3 [NACHT, LRR, and PYD domain-containing protein 3] inflammasome/IL [interleukin]-1β) in atherosclerotic CVD. Colchicine was recently approved by the US Food and Drug Administration for this indication. Diverse anti-inflammatory drugs targeting distinct inflammatory pathways are widely used for the management of other CVDs including myocarditis and pericarditis. Ongoing research efforts are directed to implementing anti-inflammatory therapeutic strategies across a growing number of CVDs, through repurposing of available anti-inflammatory drugs and development of novel anti-inflammatory compounds, which are herein concisely discussed. This review also summarizes the main characteristics and findings of completed and upcoming randomized controlled trials directly targeting inflammation in CVDs, and discusses major challenges and future perspectives in the exciting and constantly expanding landscape of cardioimmunology.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Aldo Bonaventura
- Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi Varese, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Juric I, Katalinic L, Furic-Cunko V, Jelakovic B, Basic-Jukic N. Implantable Cardioverter Defibrillators in Prevention of Sudden Cardiac Death in Kidney Transplant Recipients: A Case Series and an Appraisal of Current Evidence. J Clin Med 2024; 13:5820. [PMID: 39407880 PMCID: PMC11476749 DOI: 10.3390/jcm13195820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Cardiovascular diseases, including sudden cardiac death (SCD), are the leading cause of mortality among kidney transplant recipients (KTRs). While implantable cardioverter defibrillators (ICDs) are established for SCD prevention in the general population, data on the benefits in patients with CKD is scarce and controversial, and there is no established general consensus on their use in this group of patients. Furthermore, data for KTRs are lacking. The aim of this study is to present our experience with ICDs in KTRs and evaluate the outcomes in this population. Methods: We retrospectively analyzed medical records of KTRs who received a kidney allograft between October 1973 and December 2023 and received ICDs for the prevention of SCD. Results: Of 2282 KTRs, 10 patients (0.44%) underwent an ICD implantation with an average age of 60.6 years at the time of implantation; 9 were male. Primary prevention of SCD was the most common indication, with only one patient receiving an ICD following sudden cardiac arrest. The female patient received an ICD while on dialysis, and the rest of the patients received ICDs in the posttransplant period with an average time of 9.1 years after KT. Kidney allograft function was reduced in all patients at the time of the ICD implantation with an average estimated glomerular filtration rate (eGFR) of 44 mL/min/1.73 m2. No ICD-related complications were recorded. Six patients are alive with an average follow-up of 5.2 years. Conclusions: ICD implantation in carefully selected KTRs may offer survival benefits and can be a valuable tool in preventing SCD. Larger studies are needed to confirm these findings and establish clear guidelines for ICD use in this specific population.
Collapse
Affiliation(s)
- Ivana Juric
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (L.K.); (V.F.-C.); (B.J.); (N.B.-J.)
| | - Lea Katalinic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (L.K.); (V.F.-C.); (B.J.); (N.B.-J.)
| | - Vesna Furic-Cunko
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (L.K.); (V.F.-C.); (B.J.); (N.B.-J.)
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (L.K.); (V.F.-C.); (B.J.); (N.B.-J.)
- Faculty of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nikolina Basic-Jukic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (L.K.); (V.F.-C.); (B.J.); (N.B.-J.)
- Faculty of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Wenzl FA, Bruno F, Kraler S, Klingenberg R, Akhmedov A, Ministrini S, Santos K, Godly K, Godly J, Niederseer D, Manka R, Bergmann A, Camici GG, von Eckardstein A, Stähli B, Muller O, Roffi M, Räber L, Lüscher TF. Dipeptidyl peptidase 3 plasma levels predict cardiogenic shock and mortality in acute coronary syndromes. Eur Heart J 2023; 44:3859-3871. [PMID: 37632743 DOI: 10.1093/eurheartj/ehad545] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND AND AIMS Dipeptidyl peptidase 3 (DPP3) is a protease involved in the degradation of angiotensin II which disturbs peripheral blood pressure regulation and compromises left ventricular function. This study examined the relationship of circulating DPP3 (cDPP3) with cardiogenic shock (CS) and mortality in patients presenting with acute coronary syndromes (ACS). METHODS Plasma cDPP3 levels were assessed at baseline and 12-24 h after presentation in patients with ACS prospectively enrolled into the multi-centre SPUM-ACS study (n = 4787). RESULTS Circulating DPP3 levels were associated with in-hospital CS when accounting for established risk factors including the ORBI risk score [per log-2 increase, hazard ratio (HR) 1.38, 95% confidence interval (CI) 1.05-1.82, P = .021]. High cDPP3 was an independent predictor of mortality at 30 days (HR 1.87, 95% CI 1.36-2.58, P < .001) and at one year (HR 1.61, 95% CI 1.28-2.02, P < .001) after adjustment for established risk factors and the GRACE 2.0 score. Compared to values within the normal range, persistently elevated cDPP3 levels at 12-24 h were associated with 13.4-fold increased 30-day mortality risk (HR 13.42, 95% CI 4.86-37.09, P < .001) and 5.8-fold increased 1-year mortality risk (HR 5.79, 95% CI 2.70-12.42, P < .001). Results were consistent across various patient subgroups. CONCLUSIONS This study identifies cDPP3 as a novel marker of CS and increased mortality in patients with ACS. Circulating DPP3 offers prognostic information beyond established risk factors and improves early risk assessment.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Bruno
- Division of Cardiology, Cardiovascular and Thoracic Department, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
- Royal Brompton and Harefield Hospitals, London, UK
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Roland Klingenberg
- Department of Cardiology, Kerckhoff Heart and Thorax Center, and Campus of the Justus Liebig University of Giessen, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Konstantin Godly
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Julia Godly
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Barbara Stähli
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Muller
- Service of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marco Roffi
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Cardiovascular Center, University Hospital Bern, Bern, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, Strand, London, UK
| |
Collapse
|
6
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 PMCID: PMC10305352 DOI: 10.3390/life13061420] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
7
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
8
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
9
|
Kaldirim M, Lang A, Pfeiler S, Fiegenbaum P, Kelm M, Bönner F, Gerdes N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front Cardiovasc Med 2022; 9:907348. [PMID: 35845058 PMCID: PMC9280721 DOI: 10.3389/fcvm.2022.907348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival. Since the development of drugs targeting mTOR, there is proven efficacy in terms of survival benefit in cancer and allograft rejection. This review presents current information and concepts of mTOR activity in myocardial infarction and atherosclerosis, two important instances of cardiovascular illness involving acute and chronic inflammation. In experimental models, inhibition of mTOR signaling reduces myocardial infarct size, enhances functional remodeling, and lowers the overall burden of atheroma. Aside from the well-known effects of mTOR inhibition, which are suppression of growth and general metabolic activity, mTOR also impacts on specific leukocyte subpopulations and inflammatory processes. Inflammatory cell abundance is decreased due to lower migratory capacity, decreased production of chemoattractants and cytokines, and attenuated proliferation. In contrast to the generally suppressed growth signals, anti-inflammatory cell types such as regulatory T cells and reparative macrophages are enriched and activated, promoting resolution of inflammation and tissue regeneration. Nonetheless, given its involvement in the control of major cellular pathways and the maintenance of a functional immune response, modification of this system necessitates a balanced and time-limited approach. Overall, this review will focus on the advancements, prospects, and limits of regulating mTOR signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Madlen Kaldirim
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Pia Fiegenbaum
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Bönner F, Gastl M, Nienhaus F, Rothe M, Jahn A, Pfeiler S, Gross U, Schultheiss HP, Ibanez B, Kozerke S, Szendroedi J, Roden M, Westenfeld R, Schrader J, Flögel U, Heusch G, Kelm M. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo 19F cardiovascular magnetic resonance in pigs. Basic Res Cardiol 2022; 117:21. [PMID: 35389088 PMCID: PMC8989832 DOI: 10.1007/s00395-022-00928-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023]
Abstract
Inflammatory cell infiltration is central to healing after acute myocardial infarction (AMI). The relation of regional inflammation to edema, infarct size (IS), microvascular obstruction (MVO), intramyocardial hemorrhage (IMH), and regional and global LV function is not clear. Here we noninvasively characterized regional inflammation and contractile function in reperfused AMI in pigs using fluorine (19F) cardiovascular magnetic resonance (CMR). Adult anesthetized pigs underwent left anterior descending coronary artery instrumentation with either 90 min occlusion (n = 17) or without occlusion (sham, n = 5). After 3 days, in surviving animals a perfluorooctyl bromide nanoemulsion was infused intravenously to label monocytes/macrophages. At day 6, in vivo 1H-CMR was performed with cine, T2 and T2* weighted imaging, T2 and T1 mapping, perfusion and late gadolinium enhancement followed by 19F-CMR. Pigs were sacrificed for subsequent ex vivo scans and histology. Edema extent was 35 ± 8% and IS was 22 ± 6% of LV mass. Six of ten surviving AMI animals displayed both MVO and IMH (3.3 ± 1.6% and 1.9 ± 0.8% of LV mass). The 19F signal, reflecting the presence and density of monocytes/macrophages, was consistently smaller than edema volume or IS and not apparent in remote areas. The 19F signal-to-noise ratio (SNR) > 8 in the infarct border zone was associated with impaired remote systolic wall thickening. A whole heart value of 19F integral (19F SNR × milliliter) > 200 was related to initial LV remodeling independently of edema, IS, MVO, and IMH. Thus, 19F-CMR quantitatively characterizes regional inflammation after AMI and its relation to edema, IS, MVO, IMH and regional and global LV function and remodeling.
Collapse
Affiliation(s)
- Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - M Gastl
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - F Nienhaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - M Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner, Düsseldorf, Germany
| | - A Jahn
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Central Animal Research Facility, Heinrich Heine University, Düsseldorf, Germany
| | - S Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - U Gross
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - H-P Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - S Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - J Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - M Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - R Westenfeld
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - J Schrader
- Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - U Flögel
- Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - M Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|