1
|
Dessing MC, van den Broek TJ, Hoevenaars FPM, van den Brink WJ, Rundle M, Frost G, Afman L, Wopereis S. Multi-study feasibility analysis on a composite biomarker of inflammatory resilience to quantify the effects of energy restriction on low-grade inflammation in overweight and obese individuals. Eur J Nutr 2025; 64:106. [PMID: 40035864 PMCID: PMC11880040 DOI: 10.1007/s00394-025-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
PURPOSE Assessing the health impacts of nutritional interventions in metabolically compromised but otherwise healthy individuals is challenging, necessitating sensitive tools. Phenotypic flexibility offers an innovative way to measure homeostatic capacity during challenge tests. A composite biomarker of inflammatory resilience has proven useful in evaluating the health benefits of whole-grain wheat interventions in overweight and obese individuals. Expanding this method to other dietary interventions to combat low-grade inflammation is essential. METHODS This study investigated the feasibility of a composite biomarker of inflammatory resilience through secondary analysis of samples from two independent energy restriction (ER) trials, Bellyfat (NCT02194504) and Nutritech (NCT01684917). In these trials, fasting and postprandial inflammation was analysed using a variety of markers. Four composite biomarker models were developed on the basis of postprandial inflammatory marker responses via the 'health space' model method. These models were statistically evaluated for their sensitivity in detecting the effects of 12 weeks of ER. RESULTS The minimal composite biomarkers, consisting of IL-6, IL-8, IL-10, and TNF-α, lacked the ability to detect postprandial intervention effects in both ER trials. However, in the Nutritech study, the extended, endothelial, and optimized composite biomarkers of inflammatory resilience displayed significant responses to the ER (all P < 0.005). In the latter 3 models, a reduction in the inflammatory score was correlated with a reduction in BMI and body fat percentage. CONCLUSION This study underscores the feasibility of employing a composite biomarker of inflammatory resilience to evaluate ER interventions. Further validation in additional nutritional intervention studies is necessary. Once validated, this composite biomarker could offer a novel approach for assessing low-grade inflammation and phenotypic flexibility.
Collapse
Affiliation(s)
- Mark C Dessing
- Netherlands Organization for Applied Scientific Research (TNO), 2333 BE, Leiden, The Netherlands.
| | - Tim J van den Broek
- Netherlands Organization for Applied Scientific Research (TNO), 2333 BE, Leiden, The Netherlands
| | - Femke P M Hoevenaars
- Netherlands Organization for Applied Scientific Research (TNO), 2333 BE, Leiden, The Netherlands
| | - Willem J van den Brink
- Netherlands Organization for Applied Scientific Research (TNO), 2333 BE, Leiden, The Netherlands
| | - Milena Rundle
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lydia Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Suzan Wopereis
- Netherlands Organization for Applied Scientific Research (TNO), 2333 BE, Leiden, The Netherlands
| |
Collapse
|
2
|
O’Donovan SD, Rundle M, Thomas EL, Bell JD, Frost G, Jacobs DM, Wanders A, de Vries R, Mariman EC, van Baak MA, Sterkman L, Nieuwdorp M, Groen AK, Arts IC, van Riel NA, Afman LA. Quantifying the effect of nutritional interventions on metabolic resilience using personalized computational models. iScience 2024; 27:109362. [PMID: 38500825 PMCID: PMC10946327 DOI: 10.1016/j.isci.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
The manifestation of metabolic deteriorations that accompany overweight and obesity can differ greatly between individuals, giving rise to a highly heterogeneous population. This inter-individual variation can impede both the provision and assessment of nutritional interventions as multiple aspects of metabolic health should be considered at once. Here, we apply the Mixed Meal Model, a physiology-based computational model, to characterize an individual's metabolic health in silico. A population of 342 personalized models were generated using data for individuals with overweight and obesity from three independent intervention studies, demonstrating a strong relationship between the model-derived metric of insulin resistance (ρ = 0.67, p < 0.05) and the gold-standard hyperinsulinemic-euglycemic clamp. The model is also shown to quantify liver fat accumulation and β-cell functionality. Moreover, we show that personalized Mixed Meal Models can be used to evaluate the impact of a dietary intervention on multiple aspects of metabolic health at the individual level.
Collapse
Affiliation(s)
- Shauna D. O’Donovan
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Milena Rundle
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - E. Louise Thomas
- Research Center for Optimal Health, School of Life Sciences, University of Westminster, London, the United Kingdom
| | - Jimmy D. Bell
- Research Center for Optimal Health, School of Life Sciences, University of Westminster, London, the United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Doris M. Jacobs
- Science & Technology, Unilever Foods Innovation Center, Wageningen, the Netherlands
| | - Anne Wanders
- Science & Technology, Unilever Foods Innovation Center, Wageningen, the Netherlands
| | - Ryan de Vries
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Edwin C.M. Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Marleen A. van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Luc Sterkman
- Caelus Pharmaceuticals, Zegveld, the Netherlands
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam UMC Locatie, AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Vascular Medicine, Amsterdam UMC Locatie, AMC, Amsterdam, the Netherlands
| | - Ilja C.W. Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Natal A.W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lydia A. Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
3
|
Muriana FJG. Large metabolic swings: when feeding exceeds its goals. Trends Endocrinol Metab 2024; 35:185-187. [PMID: 38135555 DOI: 10.1016/j.tem.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Exaggerated blood excursions of nutrients and endogenous molecules in response to food intake may have health consequences if they repeatedly exceed the capacity of homeostatic mechanisms. Here, I discuss the significance of abnormally high postprandial metabolic fluctuations, the role of some influencing factors, and suggest ways to avoid them.
Collapse
Affiliation(s)
- Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Campus UPO, Building 46, Ctra. De Utrera Km 1, Seville 41013, Spain.
| |
Collapse
|