1
|
Allaw F, Vu Thi Lan H, Nagao M, Ndegwa L, Levy Hara G, Kanj SS, Tattevin P. Antibiotic shortages: An overview by the alliance for the prudent use of antibiotics (APUA). Int J Antimicrob Agents 2025; 65:107456. [PMID: 39894061 DOI: 10.1016/j.ijantimicag.2025.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Antibiotics have been among the drugs most affected by shortages over the last two decades, with harmful consequences that may persist over years. This position paper was designed by the Alliance for the Prudent Use of Antibiotics (APUA), an international multidisciplinary consortium of experts dedicated to combating antimicrobial resistance. METHODS We performed a narrative review to examine the main causes and impacts of antibiotics shortages, and to identify the solutions that may be proposed to prevent and mitigate this public health threat. RESULTS The main causes of antibiotic shortages are failure to comply with good manufacturing practices, regulatory issues, unavailability of essential components, unanticipated discontinuation of production by a major supplier, unexpected surges in demand, and other logistical challenges. The main consequences include delays in appropriate treatment administration, overuse of broad-spectrum antibiotics with an increased risk of resistance, reduced efficacy, and increased toxicity due to sub-optimal antibiotics use, increased costs, medication errors, and prolonged or repeated hospital stays. Proposed potential solutions for antibiotic shortages include multidisciplinary international initiatives to foster market entry rewards, specific solutions for low-and-middle income countries (LMICs), strengthening supply chains, encouraging local production, implementing market entry incentives and facilitating the registration process for novel antibiotics and vaccines. CONCLUSIONS Antibiotics shortage severely impacts patient care and public health worldwide. The sustainability of both current and future antibiotics depends on the implementation of effective global health strategies and ongoing financial commitment. Immediate and decisive action is necessary to protect global health for future generations.
Collapse
Affiliation(s)
- Fatima Allaw
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Linus Ndegwa
- Infection Prevention network-Kenya (IPNET-K), Nairobi, Kenya
| | - Gabriel Levy Hara
- Infectious Diseases Unit, Hospital Carlos G Durand, Buenos Aires, Argentina
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France.
| |
Collapse
|
2
|
Jia Y, Wang Z, Zhu S, Wang Z, Liu Y. Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114678. [PMID: 36857920 DOI: 10.1016/j.ecoenv.2023.114678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.
Collapse
Affiliation(s)
- Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zeyu Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuyao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
3
|
How to Combat Gram-Negative Bacteria Using Antimicrobial Peptides: A Challenge or an Unattainable Goal? Antibiotics (Basel) 2021; 10:antibiotics10121499. [PMID: 34943713 PMCID: PMC8698890 DOI: 10.3390/antibiotics10121499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising and effective alternative for combating pathogens, having some advantages compared to conventional antibiotics. However, AMPs must also contend with complex and specialised Gram-negative bacteria envelops. The variety of lipopolysaccharide and phospholipid composition in Gram-negative bacteria strains and species are decisive characteristics regarding their susceptibility or resistance to AMPs. Such biological and structural barriers have created delays in tuning AMPs to deal with Gram-negative bacteria. This becomes even more acute because little is known about the interaction AMP–Gram-negative bacteria and/or AMPs’ physicochemical characteristics, which could lead to obtaining selective molecules against Gram-negative bacteria. As a consequence, available AMPs usually have highly associated haemolytic and/or cytotoxic activity. Only one AMP has so far been FDA approved and another two are currently in clinical trials against Gram-negative bacteria. Such a pessimistic panorama suggests that efforts should be concentrated on the search for new molecules, designs and strategies for combating infection caused by this type of microorganism. This review has therefore been aimed at describing the currently available AMPs for combating Gram-negative bacteria, exploring the characteristics of these bacteria’s cell envelop hampering the development of new AMPs, and offers a perspective regarding the challenges for designing new AMPs against Gram-negative bacteria.
Collapse
|
4
|
Tang J, Wang W, Chu W. Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed ( Hizikia fusiforme). Front Cell Infect Microbiol 2020; 10:586750. [PMID: 33194827 PMCID: PMC7662131 DOI: 10.3389/fcimb.2020.586750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant bacteria (MDR) are becoming a global health problem, and scientists are continuously investigating new strategies to fight against MDR. Seaweeds are an important source of biological compounds and can serve as natural sources for bacterial infection control. This study evaluated the antimicrobial and anti-quorum sensing (QS) activities of phlorotannins from Hizikia fusiforme. The phlorotannins exhibited antimicrobial activity against selected bacterial pathogens and inhibited QS activity of the reporter strain Chromobacterium violaceum 12472 by inhibiting purple pigment production. Phlorotannins can decrease the bacterial motility, reduce the production of extracellular protease, hemolysin, and pyocyanin and inhibit biofilm formation of Pseudomonas aeruginosa. In vivo studies showed that phlorotannins can reduce P. aeruginosa inflicted mortality in Caenorhabditis elegans. This study shows that phlorotannins from H. fusiforme have certain antimicrobial and anti-quorum sensing activities and have the potential to control bacterial infection for pharmaceutical usage.
Collapse
Affiliation(s)
- Jiali Tang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenqian Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Evaluation of 1,2-Benzothiazine 1,1-dioxide Derivatives In Vitro Activity towards Clinical-Relevant Microorganisms and Fibroblasts. Molecules 2020; 25:molecules25153503. [PMID: 32752040 PMCID: PMC7435855 DOI: 10.3390/molecules25153503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The global concern related with growing number of bacterial pathogens, resistant to numerous antibiotics, prone scientific environment to search for new antimicrobials. Antiseptics appear to be suitable candidates as adjunctive agents to antibiotics or alternative local treatment option aiming to prevent and treat infections. 1,2-benzothiazines are considered one the most promising of them. In this research twenty 1,2-benzothiazine 1,1-dioxide derivatives were scrutinized with regard to their biological activity. Three of them are new. For evaluation of compounds' activity against microbial pathogens, disk diffusion method and serial microdilution method was applied. To establish the cytotoxicity profile of tested 1,2-benzothiazines 1,1-dioxides derivatives, the cytotoxicity assay using fibroblasts L292 was performed. Antimicrobial activity of all tested compounds against Gram-positive Staphylococcus aureus and Enterococcus faecalis strains was higher than antimicrobial activity of DMSO solvent, which possesses antimicrobial activity itself. Gram-negative P. aeruginosa, E. coli and K. pneumoniae have shown susceptibility only to compounds 3e, 7i and 7l. None of tested compounds was effective against C. albicans. Compound 6g has demonstrated the strongest antimicrobial potency (MIC = 0.00975 mg/mL) among compounds of series 6. Compounds of series 7, namely 7d, 7f, 7g had the lowest minimum inhibitory concentration (MIC). Compound 7f displayed also the lowest cytotoxic effect against fibroblast cell line among series 7 compounds. All tested derivatives displayed lower MIC against Gram-positive bacteria than commercially applied antiseptic, povidone iodine, which MIC value range for tested Gram-positive bacteria was 1.56-6.25 mg/mL.
Collapse
|
6
|
Garber B, Glauser J. Recent Developments in Infectious Disease Chemotherapy: Review for Emergency Department Practitioners 2020. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2020; 8:116-121. [PMID: 32837804 PMCID: PMC7296288 DOI: 10.1007/s40138-020-00218-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purpose of Review We discuss and review new antimicrobials for treatment of bacterial, viral, fungal, and parasitic infections with indications, contraindications, and side effects for each. We will also review new information and indications on older agents that are relevant to clinical practice. Many of them may be unfamiliar to Emergency Physicians given their newness and at times hospital restrictions on their use. We also review some new promising agents that are not yet in the clinical pipeline. Recent Findings As new antibiotics become available for clinicians to use, new information becomes available with respect to the drugs' indications, efficacy, pathogen resistance, drug-drug interactions, and side effects. Summary This article provides Emergency Department clinicians with a useful summary with new information on antibiotic use and recent research into agents which may become available.
Collapse
Affiliation(s)
- Boris Garber
- MetroHealth Medical Center, Case Western Reserve School of Medicine, Cleveland, OH USA
| | - Jonathan Glauser
- MetroHealth Medical Center, Case Western Reserve School of Medicine, Cleveland, OH USA
| |
Collapse
|
7
|
Lamut A, Cruz CD, Skok Ž, Barančoková M, Zidar N, Zega A, Mašič LP, Ilaš J, Tammela P, Kikelj D, Tomašič T. Design, synthesis and biological evaluation of novel DNA gyrase inhibitors and their siderophore mimic conjugates. Bioorg Chem 2019; 95:103550. [PMID: 31911309 DOI: 10.1016/j.bioorg.2019.103550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
Bacterial DNA gyrase is an important target for the development of novel antibacterial drugs, which are urgently needed because of high level of antibiotic resistance worldwide. We designed and synthesized new 4,5,6,7-tetrahydrobenzo[d]thiazole-based DNA gyrase B inhibitors and their conjugates with siderophore mimics, which were introduced to increase the uptake of inhibitors into the bacterial cytoplasm. The most potent conjugate 34 had an IC50 of 58 nM against Escherichia coli DNA gyrase and displayed MIC of 14 µg/mL against E. coli ΔtolC strain. Only minor improvements in the antibacterial activities against wild-type E. coli in low-iron conditions were seen for DNA gyrase inhibitor - siderophore mimic conjugates.
Collapse
Affiliation(s)
- Andraž Lamut
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Michaela Barančoková
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Chastain DB, King ST, Stover KR. Rethinking urinary antibiotic breakpoints: analysis of urinary antibiotic concentrations to treat multidrug resistant organisms. BMC Res Notes 2018; 11:497. [PMID: 30029611 PMCID: PMC6053836 DOI: 10.1186/s13104-018-3599-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/12/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The present study analyzed whether renally eliminated antibiotics achieve sufficient urinary concentrations based on their pharmacokinetic/pharmacodynamic principles to effectively eradicate organisms deemed resistant by automated susceptibility testing. RESULTS Lower median minimum inhibitory concentrations against enterobacteriaceae were noted for ceftriaxone, cefepime, and doripenem when comparing Etest® to Vitek®. All Pseudomonas aeruginosa isolates were susceptible to cefepime, ciprofloxacin, and doripenem with both susceptibility methods, but higher median minimum inhibitory concentrations were observed with Etest®. Urine concentrations/time profiles were calculated for standard doses of ceftriaxone, cefepime, doripenem, and ciprofloxacin. The data presented in the current study suggests high urine concentrations of antibiotics may effectively eradicate bacteria which were determined to be resistant per in vitro susceptibility testing.
Collapse
Affiliation(s)
- Daniel B Chastain
- University of Georgia College of Pharmacy, 1000 Jefferson Street, Albany, GA, 31701, USA.
| | - S Travis King
- Ochsner Medical Center-New Orleans, New Orleans, LA, 70121, USA
| | - Kayla R Stover
- University of Mississippi School of Pharmacy, Jackson, MS, 39216, USA.,Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
9
|
Koziatek C, Mohan S, Caspers C, Swaminathan A, Swartz J. Experience with dalbavancin for cellulitis in the emergency department and emergency observation unit. Am J Emerg Med 2018; 36:1312-1314. [DOI: 10.1016/j.ajem.2017.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022] Open
|
10
|
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018; 13:2217-2263. [PMID: 29695904 PMCID: PMC5905846 DOI: 10.2147/ijn.s154748] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested.
Collapse
Affiliation(s)
- Kerong Yang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Han
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingpeng Chen
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhao Zheng
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kesong Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
11
|
Casciaro B, Cappiello F, Cacciafesta M, Mangoni ML. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1-21)NH 2: Amino Acids Substitution and Conjugation to Nanoparticles. Front Chem 2017; 5:26. [PMID: 28487853 PMCID: PMC5404639 DOI: 10.3389/fchem.2017.00026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1–21)NH2, [Esc(1–21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1–21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1–21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Mauro Cacciafesta
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of RomeRome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| |
Collapse
|
12
|
Pourmand A, Mazer-Amirshahi M, Jasani G, May L. Emerging trends in antibiotic resistance: Implications for emergency medicine. Am J Emerg Med 2017; 35:1172-1176. [PMID: 28302376 DOI: 10.1016/j.ajem.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Many bacteria are demonstrating increasing levels of resistance to commonly used antibiotics. While this has implications for the healthcare system as a whole, many patients infected with these resistant organisms will initially present to the emergency department (ED). The purpose of this review is to provide a summary of current trends in infections caused by the most clinically relevant resistant organisms encountered in emergency medicine. METHODS Bacteria were selected based on the Centers for Disease Control and Prevention's National Action Plan for Combating Antibiotic Resistant Bacteria, and PubMed database. RESULTS The following bacteria were included: methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, Escherichia coli, carbapenem-resistant Enterobacteriaceae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. All have shown increasing rates of resistance to one or more of the antibiotics commonly used to treat them. Increasing rates of antibiotic resistance are associated with worse clinical outcomes and greater healthcare costs. CONCLUSIONS Antibiotic resistance is increasing and poses significant a risk to both the patient and public health as a whole. Appropriate choice of initial antibiotic is important in improving clinical outcomes, which is often the role of the ED provider. On a broader level, the ED must also take part in institutional efforts such as Antibiotic Stewardship Programs, which have been shown to decrease costs and rates of infection with resistant organisms. Ultimately, a multifaceted approach will be required to curb the threat of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ali Pourmand
- Department of Emergency Medicine, The George Washington University, Washington, DC, United States; The George Washington University, School of Medicine and Health Sciences, Washington, DC, United States.
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center, Washington, DC, United States; Georgetown University School of Medicine, Washington, DC, United States
| | - Gregory Jasani
- Department of Emergency Medicine, The George Washington University, Washington, DC, United States; The George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Larissa May
- Department of Emergency Medicine, UC Davis, Davis, CA, United States
| |
Collapse
|