1
|
Chen M, Wu WJ, Lee MH, Ku TH, Ma GC. Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses. Genes (Basel) 2020; 11:979. [PMID: 32842633 PMCID: PMC7564499 DOI: 10.3390/genes11090979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023] Open
Abstract
Chromosome microarray analysis has been used for prenatal detection of copy number variations (CNVs) and genetic counseling of CNVs has been greatly improved after the accumulation of knowledge from postnatal outcomes in terms of the genotype-phenotype correlation. However, a significant number of CNVs are still regarded as variants of unknown significance (VUS). CNVs at the chromosome X (X-CNVs) represent a unique group of genetic changes in genetic counseling; X-CNVs are similar to X-linked recessive monogenic disorders in that the prognosis in males is expected to be poor. Trio analysis is typically advised to patients with X-CNVs but such an approach may be inadequate in prenatal settings since the clinical relevance is sometimes uninformative, particularly for the maternally inherited X-CNVs in male fetuses. Here, we reported four healthy women whose male fetuses were found to have X-CNVs inherited from the mothers. The X-CNVs were initially recognized as VUS or likely pathogenic in males according to the publicly available information. After extending genetic analyses to male relatives of the maternal lineages, however, the relevance of the X-CNVs was reconsidered to be likely benign. The results highlight that an extended analysis to include more relatives, in addition to the parents, provides further information for genetic counseling when X-CNVs are encountered in prenatal settings.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.C.); (W.-J.W.); (M.-H.L.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua 50046, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Biomedical Science, Dayeh University, Changhua 51591, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wan-Ju Wu
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.C.); (W.-J.W.); (M.-H.L.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
- Ph.D. Programs in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Hui Lee
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.C.); (W.-J.W.); (M.-H.L.)
| | - Tien-Hsiung Ku
- Department of Anesthesiology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.C.); (W.-J.W.); (M.-H.L.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua 50046, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| |
Collapse
|
2
|
Pezeshkpoor B, Oldenburg J. F8 gene: embedded in a region of genomic instability representing a hotspot of complex rearrangements. Haemophilia 2015; 21:513-5. [PMID: 25939373 DOI: 10.1111/hae.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Conte MI, Pescatore A, Paciolla M, Esposito E, Miano MG, Lioi MB, McAleer MA, Giardino G, Pignata C, Irvine AD, Scheuerle AE, Royer G, Hadj-Rabia S, Bodemer C, Bonnefont JP, Munnich A, Smahi A, Steffann J, Fusco F, Ursini MV. Insight intoIKBKG/NEMOLocus: Report of New Mutations and Complex Genomic Rearrangements Leading to Incontinentia Pigmenti Disease. Hum Mutat 2013; 35:165-77. [DOI: 10.1002/humu.22483] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022]
Affiliation(s)
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’; IGB-CNR; Naples Italy
| | - Mariateresa Paciolla
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’; IGB-CNR; Naples Italy
| | - Elio Esposito
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’; IGB-CNR; Naples Italy
| | | | | | - Maeve A. McAleer
- Department of Pediatric Dermatology; Our Lady's Children's Hospital; Crumlin, Dublin12 Ireland
- National Children's Research Centre; Our Lady's Children's Hospital Dublin; Crumlin, Dublin 12 Ireland
| | - Giuliana Giardino
- Department of Translational Medical Sciences; Federico II University; Naples 80131 Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences; Federico II University; Naples 80131 Italy
| | - Alan D. Irvine
- Department of Pediatric Dermatology; Our Lady's Children's Hospital; Crumlin, Dublin12 Ireland
- National Children's Research Centre; Our Lady's Children's Hospital Dublin; Crumlin, Dublin 12 Ireland
- School of Medicine; Trinity College Dublin; Dublin Ireland
| | | | - Ghislaine Royer
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Smail Hadj-Rabia
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Christine Bodemer
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Jean-Paul Bonnefont
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Arnold Munnich
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Asma Smahi
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Julie Steffann
- Department of Genetics; INSERM U781, Hôpital Necker-Enfants Malades; Paris France
| | - Francesca Fusco
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’; IGB-CNR; Naples Italy
| | | |
Collapse
|
4
|
Pezeshkpoor B, Rost S, Oldenburg J, El-Maarri O. Identification of a third rearrangement at Xq28 that causes severe hemophilia A as a result of homologous recombination between inverted repeats. J Thromb Haemost 2012; 10:1600-8. [PMID: 22672522 DOI: 10.1111/j.1538-7836.2012.04809.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intrachromosomal homologous recombination between inverted repeats on the X chromosome account for about half of severe hemophilia A cases. Repeats in F8 intron 1 and intron 22 can recombine with homologous inverted repeats located about 200 kb upstream and 500 kb downstream of F8, respectively, resulting in partial sequence inversion of the F8 open reading frame and, subsequently, no functional protein production. OBJECTIVES In the present study, we characterize a third novel homologous recombination at Xq28 consistent with absence of F8 transcription that we previously reported for the affected chromosome of the index patient as well as his mother and sister. RESULTS The rearrangement occurs between a repeat in F8 intron 1 (Int1R-1) and an inverted identical repeat (Int1R-2d) in intron 2 of a duplicated copy of IKBKG located about 386 kb upstream of F8. The rearrangement was confirmed by Southern blot and inverse PCR and results in failure of PCR amplification across Int1R-1. CONCLUSION We developed a PCR-based diagnostic method that can be used to screen for this genetic rearrangement in cases of severe hemophilia A for which mutations cannot be identified.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
5
|
Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, Lioi MB, Smahi A, Miano MG, Ursini MV. Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet 2011; 21:1260-71. [PMID: 22121116 DOI: 10.1093/hmg/ddr556] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.
Collapse
Affiliation(s)
- Francesca Fusco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Utine GE, Kiper PÖ, Alanay Y, Haliloğlu G, Aktaş D, Boduroğlu K, Tunçbilek E, Alikaşifoğlu M. Searching for Copy Number Changes in Nonsyndromic X-Linked Intellectual Disability. Mol Syndromol 2011; 2:64-71. [PMID: 22511893 DOI: 10.1159/000334289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability (ID) has a prevalence of 2-3% with 0.3% of the population being severely retarded. Etiology is heterogeneous, owing to numerous genetic and environmental factors. Underlying etiology remains undetermined in 75-80% of mildly disabled patients and 20-50% of those severely disabled. Twelve percent of all ID is thought to be X-linked (XLID). This study covers copy number analysis of some of the known XLID genes, using multiplex ligation-dependent probe amplification (MLPA) in 100 nonsyndromic patients. One of the patients was found to have duplication in all exons of MECP2 gene, and another had duplication in the fifth exon of TM4SF2/TSPAN7 gene. Affymetrix® 6.0 whole-genome SNP microarray confirmed the duplication in MECP2 and showed duplication of exons 2-7 in TM4SF2/TSPAN7, respectively. MECP2 duplication has recently been recognized as a syndromic cause of XLID in males, whereas duplications in TM4SF2/TSPAN7 are yet to be determined as a cause of XLID. Being an efficient, rapid, easy-to-perform, easy-to-interpret, and cost-effective method of copy number analysis of specific DNA sequences, MLPA presents wide clinical utility and may be included in diagnostic workup of ID, particularly when microarrays are unavailable as a first-line approach.
Collapse
Affiliation(s)
- G E Utine
- Clinical Genetics Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|