1
|
Xu S, Yang N. The Role and Research Progress of Mitochondria in Sensorineural Hearing Loss. Mol Neurobiol 2025; 62:6913-6921. [PMID: 39292339 PMCID: PMC12078351 DOI: 10.1007/s12035-024-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Hearing loss is one of the most common human diseases, seriously affecting everyday lives. Mitochondria, as the energy metabolism center in cells, are also involved in regulating active oxygen metabolism and mediating the occurrence of inflammation and apoptosis. Mitochondrial defects are closely related to hearing diseases. Studies have shown that mitochondrial DNA mutations are one of the causes of hereditary hearing loss. In addition, changes in mitochondrial homeostasis are directly related to noise-induced hearing loss and presbycusis. This review mainly summarizes and discusses the effects of mitochondrial dysfunction and mitophagy on hearing loss. Subsequently, we introduce the recent research progress of targeted mitochondria therapy in the hearing system.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Kandettu A, Yeole M, Sekar H, Garapati K, Kaur N, Anand A, Hegde P, Nair K, Medishetti R, Bhat V, Radhakrishnan P, Mundkur SC, Shrikiran HA, Pandey A, Sevilimedu A, Chakrabarty S, Shukla A. Further delineation of defects in MRPS2 causing human OXPHOS deficiency and early developmental abnormalities in zebrafish. Eur J Hum Genet 2025:10.1038/s41431-025-01858-1. [PMID: 40360742 DOI: 10.1038/s41431-025-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/30/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial ribosomal protein-small 2 (MRPS2) encodes a vital structural protein essential for assembling mitoribosomal small subunit and thus mitochondrial translation. Any defect in mitochondrial translation impacts OXPHOS activity and cellular respiration. Defects in MRPS2 have been implicated recently in four families with combined oxidative phosphorylation deficiency-36 (MIM# 617950). We herein describe two individuals from two unrelated families with variable phenotypes of acute onset severe metabolic decompensation and symptomatic hypoglycemia. Exome sequencing identified bi-allelic variants in MRPS2 (NM_016034.5) in the affected individuals: P1: c.490 G > A p.(Glu164Lys); and P2: c.413 G > A p.(Arg138His). Further evaluation of the variant c.490 G > A p.(Glu164Lys) in patient-derived skin fibroblasts revealed decreased expression of MRPS2 transcript and protein levels of MRPS2 along with expression of complex I and IV proteins. Proteomics analysis revealed decreased expression of small subunit proteins and increased expression of large subunit proteins. Also, reduced complex I and IV enzyme activities, mitochondrial respiration (OCR), and altered mitochondrial morphology on confocal imaging were observed. Additionally, mrps2 knockout zebrafish larvae demonstrated an abnormal developmental phenotype and reduced Complex IV activity. With these findings, we identify additional families with variants in MRPS2, illustrating the variable clinical spectrum and validate the pathogenicity of defects in MRPS2 through in-vitro and in-vivo assays.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hamsini Sekar
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aakanksha Anand
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Pranavi Hegde
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Raghavender Medishetti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suneel C Mundkur
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hebbar A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aarti Sevilimedu
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India.
- Center for Rare Disease Models, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India.
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Otero MG, Freeman C, Shah R, Bai R, Cui H, Castro M, Myers Z, Choy E, Chan D, Easter M, Zhao SY, Babros M, Garg R, Deardorff M, Moser F, Pierson TM. Compound Heterozygous MRPS14 Variants Associated With Leigh Syndrome. Ann Clin Transl Neurol 2025. [PMID: 40317698 DOI: 10.1002/acn3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
MRPS14 (uS14m) is a nuclear-encoded ribosomal protein important for mitochondria-specific translation. To date, only a single individual with a recessive MRPS14-related disorder (also known as COXPD38) has been reported. We report an additional subject possessing novel compound heterozygous MRPS14 variants (p.Asp37Asn, p.Asn60Asp). The subject presented at 2 years with motor and language delays associated with elevated serum lactate/alanine levels. Brain MRI showed a constellation of signal abnormalities consistent with Leigh Syndrome, while MR spectroscopy had an increased lactate peak. Western blots of fibroblasts showed decreased MRPS14 and COX2 protein levels. These results support the pathogenicity of the MRPS14 variants identified here.
Collapse
Affiliation(s)
- Maria Gabriela Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christina Freeman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Hong Cui
- Pediatric Congenital Heart Program at Cedars-Sinai Guerin Children's and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marian Castro
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zachary Myers
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eric Choy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Derek Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Molly Easter
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sophia Y Zhao
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Madeline Babros
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ruchi Garg
- Pediatric Congenital Heart Program at Cedars-Sinai Guerin Children's and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Deardorff
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, California, Los Angeles, USA
| | - Franklin Moser
- Division of Clinical Neuroradiology and Interventional Neuroradiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tyler Mark Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Gheller JM, Silva WALD, Souza-Cáceres MB, Silva AFD, Ribeiro Ferreira MGC, Santana TDS, Dos Santos AC, Pereira-Junior SA, Nogueira É, Alencar SAD, Macedo GG, Seneda MM, Chiaratti MR, Melo-Sterza FDA. Transcriptomic analysis of heifers according to antral follicle count. Theriogenology 2025; 237:178-187. [PMID: 40024020 DOI: 10.1016/j.theriogenology.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
While antral follicle count (AFC) has been associated with higher pregnancy rates, at present, our understanding of it as a reproductive parameter remains incomplete. This study aimed to characterize gene expression profile of oocytes from crossbred Bos taurus x Bos indicus heifers with high and low AFCs. Crossbred Nelore-Angus heifers (n = 50) with a mean (SD) age of 9.6 ± 0.55 months, a weight of 295.4 ± 32.6 kg, and a BCS of 3.44 ± 0.41 were studied in a feedlot system. The heifers received a hormonal protocol based on injectable progesterone and estradiol cypionate administered 12 days apart, and ovarian ultrasonography (US) was performed 12 days after to assess the AFC. Based on AFC, heifers were divided into low (≤14 follicles) and high (≥31 follicles) AFC, groups.Forty-five days after US, 14 heifers were slaughtered, and their ovaries were collected for morphological analysis and follicle aspiration. Cumulus-oocyte complexes (COCs) from the high and low AFC groups were graded according to their quality. Only best-quality COCs were stored for RNA-seq analysis. No differences were found in the presence or diameter of the dominant follicle and corpus luteum in the US, nor in the volume of the dominant follicle postmortem. The quantity of COCs recovered from high-AFC heifers was higher than that from low-AFC heifers (P < 0.05), and a tendency (P = 0.07) toward a higher amount of grade II COCs was observed. Thirty-two genes were differentially expressed between the groups, of which 30 were up-regulated and two down-regulated in the low AFC group. Among these, 22 % (7/32) were associated with fertility (CAB39, SLC2A6, CITED2, FDX1, HSD11B2, CD81, and PLA2G12B). Moreover, 9 and 2 exclusive genes were identified in the high and low AFC groups, respectively. Enrichment analyses showed that genes exclusive to oocytes from low-AFC heifers were associated with fundamental cellular processes, such as biosynthesis/biogenesis of ribosomes, peptides, amides, and nucleotides, and also with autophagy, mitophagy and mTOR signalling pathways.On the other hand, only one pathway was enriched in the high AFC group, but this cannot be related to the events studied No differences were observed in the ovarian structures after pre-synchronization of the estrus cycle of young Crossbred Nelore-Angus heifers. However, a tendency of a higher amount of grade II COCs was observed in heifers with high AFC than in those with low AFC. RNA sequencing results indicated that the main differences between high and low AFC heifers were not reflected in the genes directly related to fertility.
Collapse
Affiliation(s)
- Janaina Menegazzo Gheller
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Wilian Aparecido Leite da Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Mirela Brochado Souza-Cáceres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Aldair Félix da Silva
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Mariane Gabriela Cesar Ribeiro Ferreira
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Taynara Dos Santos Santana
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Angélica Camargo Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Sérgio Antonio Pereira-Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Ériklis Nogueira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Corte, Av. Rádio Maia, 830 - Vila Popular, Campo Grande, MS, Brazil
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, QS 07, Lote 01, Taguatinga Sul - Taguatinga, Brasília, DF, Brazil
| | - Gustavo Guerino Macedo
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380, Londrina, PR, Brazil
| | - Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Fabiana de Andrade Melo-Sterza
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil.
| |
Collapse
|
5
|
Smith TB, Kopajtich R, Demain LAM, Rea A, Thomas HB, Schiff M, Beetz C, Joss S, Conway GS, Shukla A, Yeole M, Radhakrishnan P, Azzouz H, Ben Chehida A, Elmaleh-Bergès M, Glasgow RIC, Thompson K, Oláhová M, He L, Jenkinson EM, Jahic A, Belyantseva IA, Barzik M, Urquhart JE, O'Sullivan J, Williams SG, Bhaskar SS, Carrera S, Blakes AJM, Banka S, Yue WW, Ellingford JM, Houlden H, Munro KJ, Friedman TB, Taylor RW, Prokisch H, O'Keefe RT, Newman WG. Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype. Am J Hum Genet 2025; 112:59-74. [PMID: 39701103 PMCID: PMC11739875 DOI: 10.1016/j.ajhg.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with bi-allelic variants in death-associated protein 3 (DAP3), a nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory-chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein amounts and, consequently, decreased levels of additional protein components of the mitoribosomal small subunit, as well as an associated combined deficiency of complexes I and IV. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression and partially rescued protein levels of MRPS7, MRPS9, and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modeling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated that DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability, and DAP3 GTPase activity. Our study presents genetic and functional evidence that bi-allelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Manuel Schiff
- Université Paris Cité, Reference Center for Mitochondrial Disorders (CARAMMEL) and Reference Center Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, Filière G2M, Paris, France; INSERM UMR_S1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, UK
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hatem Azzouz
- Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Amel Ben Chehida
- Laboratoire de Recherche LR12SP02, Maladies Métaboliques Héréditaires Investigations et Prise en Charge, Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Monique Elmaleh-Bergès
- Service de Radiologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ruth I C Glasgow
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Emma M Jenkinson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Amir Jahic
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Jill E Urquhart
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - James O'Sullivan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Simon G Williams
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Sanjeev S Bhaskar
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Samantha Carrera
- Genome Editing Unit, University of Manchester, Manchester M13 9PT, UK
| | - Alexander J M Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK; Genomics England, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Holger Prokisch
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
6
|
van Strien J, Evers F, Cabrera-Orefice A, Delhez I, Kooij TWA, Huynen MA. Analysis of Complexome Profiles with the Gaussian Interaction Profiler (GIP) Reveals Novel Protein Complexes in Plasmodium falciparum. J Proteome Res 2024; 23:4467-4479. [PMID: 39262370 PMCID: PMC11459595 DOI: 10.1021/acs.jproteome.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Complexome profiling is an experimental approach to identify interactions by integrating native separation of protein complexes and quantitative mass spectrometry. In a typical complexome profile, thousands of proteins are detected across typically ≤100 fractions. This relatively low resolution leads to similar abundance profiles between proteins that are not necessarily interaction partners. To address this challenge, we introduce the Gaussian Interaction Profiler (GIP), a Gaussian mixture modeling-based clustering workflow that assigns protein clusters by modeling the migration profile of each cluster. Uniquely, the GIP offers a way to prioritize actual interactors over spuriously comigrating proteins. Using previously analyzed human fibroblast complexome profiles, we show good performance of the GIP compared to other state-of-the-art tools. We further demonstrate GIP utility by applying it to complexome profiles from the transmissible lifecycle stage of malaria parasites. We unveil promising novel associations for future experimental verification, including an interaction between the vaccine target Pfs47 and the hypothetical protein PF3D7_0417000. Taken together, the GIP provides methodological advances that facilitate more accurate and automated detection of protein complexes, setting the stage for more varied and nuanced analyses in the field of complexome profiling. The complexome profiling data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD050751.
Collapse
Affiliation(s)
- Joeri van Strien
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Felix Evers
- Medical
Microbiology, Radboud Community for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Iris Delhez
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Taco W. A. Kooij
- Medical
Microbiology, Radboud Community for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Phomvisith O, Muroya S, Otomaru K, Oshima K, Oshima I, Nishino D, Haginouchi T, Gotoh T. Maternal Undernutrition Affects Fetal Thymus DNA Methylation, Gene Expression, and, Thereby, Metabolism and Immunopoiesis in Wagyu (Japanese Black) Cattle. Int J Mol Sci 2024; 25:9242. [PMID: 39273192 PMCID: PMC11395129 DOI: 10.3390/ijms25179242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to determine the effects of maternal nutrient restriction (MNR) on the DNA methylation and gene expression patterns associated with metabolism and immunopoiesis in the thymuses of fetal Wagyu cattle. Pregnant cows were allocated to two groups: a low-nutrition (LN; 60% nutritional requirement; n = 5) and a high-nutrition (HN; 120% nutritional requirement, n = 6) group, until 8.5 months of gestation. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing were used to analyze DNA methylation and gene expression, while capillary electrophoresis-Fourier transform mass spectrometry assessed the metabolome. WGBS identified 4566 hypomethylated and 4303 hypermethylated genes in the LN group, with the intergenic regions most frequently being methylated. Pathway analysis linked hypoDMGs to Ras signaling, while hyperDMGs were associated with Hippo signaling. RNA sequencing found 94 differentially expressed genes (66 upregulated, 28 downregulated) in the LN group. The upregulated genes were tied to metabolic pathways and oxidative phosphorylation; the downregulated genes were linked to natural killer cell cytotoxicity. Key overlapping genes (GRIA1, CACNA1D, SCL25A4) were involved in cAMP signaling. The metabolomic analysis indicated an altered amino acid metabolism in the MNR fetuses. These findings suggest that MNR affects DNA methylation, gene expression, and the amino acid metabolism, impacting immune system regulation during fetal thymus development in Wagyu cattle.
Collapse
Affiliation(s)
- Ouanh Phomvisith
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Susumu Muroya
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Daichi Nishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Taketo Haginouchi
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
8
|
Smith TB, Kopajtich R, Demain LAM, Rea A, Thomas HB, Schiff M, Beetz C, Joss S, Conway GS, Shukla A, Yeole M, Radhakrishnan P, Azzouz H, Ben Chehida A, Elmaleh-Bergès M, Glasgow RIC, Thompson K, Oláhová M, He L, Jenkinson EM, Jahic A, Belyantseva IA, Barzik M, Urquhart JE, O' Sullivan J, Williams SG, Bhaskar SS, Carrera S, Blakes AJM, Banka S, Yue WW, Ellingford JM, Houlden H, Munro KJ, Friedman TB, Taylor RW, Prokisch H, O'Keefe RT, Newman WG. Biallelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered intrinsic and extrinsic apoptosis and a Perrault syndrome-spectrum phenotype. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312079. [PMID: 39371131 PMCID: PMC11451657 DOI: 10.1101/2024.08.19.24312079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The mitoribosome synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders, and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with biallelic variants in the DAP3 nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein levels, and consequently decreased levels of additional protein components of the mitoribosomal small subunit, associated with a combined complex I and IV deficiency. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression, and partially rescued protein levels of MRPS7, MRPS9 and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modelling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability and DAP3 GTPase activity. Our study presents genetic and functional evidence that biallelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Manuel Schiff
- Université Paris Cité, Reference Center for Mitochondrial Disorders (CARAMMEL) and Reference Center Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, Filière G2M, Paris, France
- Inserm UMR_S1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, United Kingdom
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hatem Azzouz
- Service de pédiatrie et des maladies métaboliques héréditaires, CHU la Rabta, 1007 Jabberi, Tunis, Tunisia
| | - Amel Ben Chehida
- Service de pédiatrie et des maladies métaboliques héréditaires, CHU la Rabta, 1007 Jabberi, Tunis, Tunisia
| | | | - Ruth I C Glasgow
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Emma M Jenkinson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Amir Jahic
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Jill E Urquhart
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - James O' Sullivan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Simon G Williams
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sanjeev S Bhaskar
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Samantha Carrera
- Genome Editing Unit, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander J M Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
- Genomics England, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, The University of Manchester, Manchester, UK
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Holger Prokisch
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| |
Collapse
|
9
|
Ditz N, Braun HP, Eubel H. Protein assemblies in the Arabidopsis thaliana chloroplast compartment. FRONTIERS IN PLANT SCIENCE 2024; 15:1380969. [PMID: 39220006 PMCID: PMC11362043 DOI: 10.3389/fpls.2024.1380969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Introduction Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions. Materials and methods For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure. Results and discussion Changes in protein:protein interaction patterns of chloroplast proteins in response to four different light intensities are reported. High molecular mass assemblies of central chloroplast electron transfer chain components as well as the PSII repair machinery react to different light intensities. In addition, the chloroplast encoded RNA-polymerase complex was found to migrate at a molecular mass of ~8 MDa, well above its previously reported molecular mass. Complexome profiling data produced during the course of this study can be interrogated by interested readers via a web-based online resource (https://complexomemap.de/projectsinteraction-chloroplasts).
Collapse
Affiliation(s)
| | | | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
10
|
Hilander T, Awadhpersad R, Monteuuis G, Broda KL, Pohjanpelto M, Pyman E, Singh SK, Nyman TA, Crevel I, Taylor RW, Saada A, Balboa D, Battersby BJ, Jackson CB, Carroll CJ. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience 2024; 27:110185. [PMID: 39015150 PMCID: PMC11251090 DOI: 10.1016/j.isci.2024.110185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.
Collapse
Affiliation(s)
- Taru Hilander
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Ryan Awadhpersad
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krystyna L. Broda
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Max Pohjanpelto
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elizabeth Pyman
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Sachin Kumar Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isabelle Crevel
- Core Facilities, St George’s, University of London, London, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center & Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher J. Carroll
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| |
Collapse
|
11
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Papadopoulos T, Gaignard P, Schiff M, Rio M, Karall D, Legendre A, Verloes A, Ruaud L. New description of an MRPS2 homozygous patient: Further features to help expend the phenotype. Eur J Med Genet 2024; 67:104889. [PMID: 38029925 DOI: 10.1016/j.ejmg.2023.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023]
Abstract
Mutated mito-ribosomal protein S2 (MRPS2) was already described in only three subjects, two with sensorineural hearing impairment, mild developmental delay, hypoglycemia, lactic acidemia and combined oxidative phosphorylation system deficiency and another, recently, presenting with a less severe phenotype. In order to expand the phenotype, we describe a new MRPS2 homozygous subject who shows particular features which have not yet been reported: initial microcephaly, joint hypermobility and autistic features.
Collapse
Affiliation(s)
- Thalia Papadopoulos
- APHP.Nord, Robert-Debré University Hospital, Department of Genetics, F-75019, Paris, France
| | - Pauline Gaignard
- Laboratoire de Biochimie Site Bicêtre, Faculté de Pharmacie, Hôpitaux Universitaires Paris-Saclay, Centre de référence des Maladies Mitochondriales, Filière Filnemus, France; Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris, France; Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Marlène Rio
- Departments of Pediatrics, Neurology and Genetics, Hopital Necker Enfants-Malades, 75015, Paris, France
| | - Daniela Karall
- Clinic for Pediatrics, Inherited Metabolic Disorders, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Adrien Legendre
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Alain Verloes
- APHP.Nord, Robert-Debré University Hospital, Department of Genetics, F-75019, Paris, France; INSERM UMR 1141, Neurodiderot, University of Paris, F-75019, Paris, France
| | - Lyse Ruaud
- APHP.Nord, Robert-Debré University Hospital, Department of Genetics, F-75019, Paris, France; INSERM UMR 1141, Neurodiderot, University of Paris, F-75019, Paris, France.
| |
Collapse
|
13
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
14
|
Ittiwut C, Ittiwut R, Kuptanon C, Matsuhashi T, Shimura M, Sugiyama Y, Onuki T, Ohtake A, Murayama K, Vatanavicharn N, Dejputtawat W, Tantisirivit N, Kor-Anantakul P, Kamolvisit W, Suphapeetiporn K, Shotelersuk V. Genetic, metabolic and clinical delineation of an MRPS23-associated mitochondrial disorder. Sci Rep 2023; 13:22005. [PMID: 38086984 PMCID: PMC10716371 DOI: 10.1038/s41598-023-49161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
MRPS23 is a nuclear gene encoding a mitochondrial ribosomal protein. A patient with a mitochondrial disorder was found to carry a variant in MRPS23. More cases are necessary to establish MRPS23 as a mitochondrial disease gene. Of 5134 exomes performed in our center, we identified five independent patients who had similar clinical manifestations and were homozygous for the same germline variant c.119C>T; p.P40L in MRPS23. Detailed clinical findings, mitochondrial enzyme activity assays from cultured skin fibroblasts, PCR-Sanger-sequencing, and variant age estimation were performed. Their available family members were also studied. Eight members homozygous for the MRPS23 p.P40L were identified. All were from Hmong hilltribe. Seven presented with alteration of consciousness and recurrent vomiting, while the eighth who was a younger brother of a proband was found pre-symptomatically. Patients showed delayed growth and development, hearing impairment, hypoglycemia, lactic acidosis, and liver dysfunction. In vitro assays of cultured fibroblasts showed combined respiratory chain complex deficiency with low activities of complexes I and IV. PCR-Sanger-sequencing confirmed the variant, which was estimated to have occurred 1550 years ago. These results establish the MRPS23-associated mitochondrial disorder inherited in an autosomal recessive pattern and provide insight into its clinical and metabolic features.
Collapse
Affiliation(s)
- Chupong Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Tetsuro Matsuhashi
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Masaru Shimura
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Takanori Onuki
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Waralee Dejputtawat
- Division of Growth and Development, Department of Pediatrics, Nakornping Hospital, Chiang Mai, Thailand
| | | | - Phawin Kor-Anantakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
15
|
Potter A, Cabrera-Orefice A, Spelbrink JN. Let's make it clear: systematic exploration of mitochondrial DNA- and RNA-protein complexes by complexome profiling. Nucleic Acids Res 2023; 51:10619-10641. [PMID: 37615582 PMCID: PMC10602928 DOI: 10.1093/nar/gkad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Johannes N Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
van Strien J, Evers F, Lutikurti M, Berendsen SL, Garanto A, van Gemert GJ, Cabrera-Orefice A, Rodenburg RJ, Brandt U, Kooij TWA, Huynen MA. Comparative Clustering (CompaCt) of eukaryote complexomes identifies novel interactions and sheds light on protein complex evolution. PLoS Comput Biol 2023; 19:e1011090. [PMID: 37549177 PMCID: PMC10434966 DOI: 10.1371/journal.pcbi.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.
Collapse
Affiliation(s)
- Joeri van Strien
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Felix Evers
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhurya Lutikurti
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn L. Berendsen
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Taco W. A. Kooij
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
18
|
Bakhshalizadeh S, Hock DH, Siddall NA, Kline BL, Sreenivasan R, Bell KM, Casagranda F, Kamalanathan S, Sahoo J, Narayanan N, Naik D, Suryadevara V, Compton AG, Amarasekera SSC, Kapoor R, Jaillard S, Simpson A, Robevska G, van den Bergen J, Pachernegg S, Ayers KL, Thorburn DR, Stroud DA, Hime GR, Sinclair AH, Tucker EJ. Deficiency of the mitochondrial ribosomal subunit, MRPL50, causes autosomal recessive syndromic premature ovarian insufficiency. Hum Genet 2023; 142:879-907. [PMID: 37148394 PMCID: PMC10329598 DOI: 10.1007/s00439-023-02563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | | | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina M Bell
- Department of Bioinformatics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033, Rennes, France
| | - Andrea Simpson
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
- College of Health and Human Services, Charles Darwin University, Darwin, NT, Australia
| | | | | | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Vila-Sanjurjo A, Mallo N, Elson JL, Smith PM, Blakely EL, Taylor RW. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol 2023; 14:1163496. [PMID: 37362424 PMCID: PMC10285412 DOI: 10.3389/fphys.2023.1163496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Joanna L. Elson
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M. Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, United Kingdom
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
21
|
Teng S, Zhang Y, Jin X, Zhu Y, Li L, Huang X, Wang D, Lin Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr Polym 2023; 303:120453. [PMID: 36657860 DOI: 10.1016/j.carbpol.2022.120453] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
22
|
Thompson K, Stroud DA, Thorburn DR, Taylor RW. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:127-139. [PMID: 36813309 DOI: 10.1016/b978-0-12-821751-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Mitochondrial Laboratory, Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
23
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
24
|
Novel ELAC2 Mutations in Individuals Presenting with Variably Severe Neurological Disease in the Presence or Absence of Cardiomyopathy. Life (Basel) 2023; 13:life13020445. [PMID: 36836802 PMCID: PMC9958991 DOI: 10.3390/life13020445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Transcription of mitochondrial DNA generates long polycistronic precursors whose nucleolytic cleavage yields the individual mtDNA-encoded transcripts. In most cases, this cleavage occurs at the 5'- and 3'-ends of tRNA sequences by the concerted action of RNAseP and RNaseZ/ELAC2 endonucleases, respectively. Variants in the ELAC2 gene have been predominantly linked to severe to mild cardiomyopathy that, in its milder forms, is accompanied by variably severe neurological presentations. Here, we report five patients from three unrelated families. Four of the patients presented mild to moderate cardiomyopathy and one died at 1 year of age, one patient had no evidence of cardiomyopathy. The patients had variable neurological presentations that included intellectual disability, ataxia, refractory epilepsy, neuropathy and deafness. All patients carried previously unreported missense and nonsense variants. Enzymatic analyses showed multiple OXPHOS deficiencies in biopsies from two patients, whereas immunoblot analyses revealed a decreased abundance of ELAC2 in fibroblasts from three patients. Northern blot analysis revealed an accumulation of unprocessed mt-tRNAVal-precursor consistent with the role of ELAC2 in transcript processing. Our study expands the genetic spectrum of ELAC2-linked disease and suggests that cardiomyopathy is not an invariably present clinical hallmark of this pathology.
Collapse
|
25
|
Silencing of the mitochondrial ribosomal protein L-24 gene activates the oxidative stress response in Caenorhabditis elegans. Biochim Biophys Acta Gen Subj 2023; 1867:130255. [PMID: 36265765 DOI: 10.1016/j.bbagen.2022.130255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.
Collapse
|
26
|
Muñoz‐Pujol G, Ortigoza‐Escobar JD, Paredes‐Fuentes AJ, Jou C, Ugarteburu O, Gort L, Yubero D, García‐Cazorla A, O'Callaghan M, Campistol J, Muchart J, Yépez VA, Gusic M, Gagneur J, Prokisch H, Artuch R, Ribes A, Urreizti R, Tort F. Leigh syndrome is the main clinical characteristic of
PTCD3
deficiency. Brain Pathol 2022; 33:e13134. [PMID: 36450274 PMCID: PMC10154364 DOI: 10.1111/bpa.13134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.
Collapse
Affiliation(s)
- Gerard Muñoz‐Pujol
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | | | - Abraham J. Paredes‐Fuentes
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Cristina Jou
- Pathology Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Déu, University of Barcelona, CIBERER Esplugues de Llobregat Barcelona Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Delia Yubero
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Angels García‐Cazorla
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jaume Campistol
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jordi Muchart
- Pediatric Radiology Department Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Vicente A. Yépez
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Mirjana Gusic
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Julien Gagneur
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Holger Prokisch
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Roser Urreizti
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| |
Collapse
|
27
|
Kline BL, Jaillard S, Bell KM, Bakhshalizadeh S, Robevska G, van den Bergen J, Dulon J, Ayers KL, Christodoulou J, Tchan MC, Touraine P, Sinclair AH, Tucker EJ. Integral Role of the Mitochondrial Ribosome in Supporting Ovarian Function: MRPS7 Variants in Syndromic Premature Ovarian Insufficiency. Genes (Basel) 2022; 13:2113. [PMID: 36421788 PMCID: PMC9690861 DOI: 10.3390/genes13112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial ribosome is critical to mitochondrial protein synthesis. Defects in both the large and small subunits of the mitochondrial ribosome can cause human disease, including, but not limited to, cardiomyopathy, hypoglycaemia, neurological dysfunction, sensorineural hearing loss and premature ovarian insufficiency (POI). POI is a common cause of infertility, characterised by elevated follicle-stimulating hormone and amenorrhea in women under the age of 40. Here we describe a patient with POI, sensorineural hearing loss and Hashimoto's disease. The co-occurrence of POI with sensorineural hearing loss indicates Perrault syndrome. Whole exome sequencing identified two compound heterozygous variants in mitochondrial ribosomal protein 7 (MRPS7), c.373A>T/p.(Lys125*) and c.536G>A/p.(Arg179His). Both novel variants are predicted to be pathogenic via in-silico algorithms. Variants in MRPS7 have been described only once in the literature and were identified in sisters, one of whom presented with congenital sensorineural hearing loss and POI, consistent with our patient phenotype. The other affected sister had a more severe disease course and died in early adolescence due to liver and renal failure before the reproductive phenotype was known. This second independent report validates that variants in MRPS7 are a cause of syndromic POI/Perrault syndrome. We present this case and review the current evidence supporting the integral role of the mitochondrial ribosome in supporting ovarian function.
Collapse
Affiliation(s)
- Brianna L. Kline
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michel C. Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
28
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|
29
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Kidnapillai S, Richardson MF, Gray L, Dean OM, McGee SL, Berk M, Walder K. Effects of Psychotropic Drugs on Ribosomal Genes and Protein Synthesis. Int J Mol Sci 2022; 23:ijms23137180. [PMID: 35806181 PMCID: PMC9266764 DOI: 10.3390/ijms23137180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Altered protein synthesis has been implicated in the pathophysiology of several neuropsychiatric disorders, particularly schizophrenia. Ribosomes are the machinery responsible for protein synthesis. However, there remains little information on whether current psychotropic drugs affect ribosomes and contribute to their therapeutic effects. We treated human neuronal-like (NT2-N) cells with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM) or vehicle control for 24 h. Transcriptomic and gene set enrichment analysis (GSEA) identified that the ribosomal pathway was altered by these drugs. We found that three of the eight drugs tested significantly decreased ribosomal gene expression, whilst one increased it. Most changes were observed in the components of cytosolic ribosomes and not mitochondrial ribosomes. Protein synthesis assays revealed that aripiprazole, clozapine and lithium all decreased protein synthesis. Several currently prescribed psychotropic drugs seem to impact ribosomal gene expression and protein synthesis. This suggests the possibility of using protein synthesis inhibitors as novel therapeutic agents for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zoe S. J. Liu
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Trang T. T. Truong
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Chiara C. Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Courtney Swinton
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Jee Hyun Kim
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Srisaiyini Kidnapillai
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Olivia M. Dean
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Sean L. McGee
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Correspondence:
| |
Collapse
|
30
|
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice. Int J Mol Sci 2022; 23:ijms23116056. [PMID: 35682734 PMCID: PMC9181494 DOI: 10.3390/ijms23116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15−/− mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15−/− mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15−/− mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15−/− knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15−/− knockout mice a suitable model for mild mitochondriopathies.
Collapse
|
31
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Liu C, Zhou W, Liu Q, Peng Z. Hypoglycemia with lactic acidosis caused by a new MRPS2 gene mutation in a Chinese girl: a case report. BMC Endocr Disord 2022; 22:15. [PMID: 34991560 PMCID: PMC8734237 DOI: 10.1186/s12902-021-00924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mitochondrial ribosomal protein S2 (MRPS2) gene mutation, which is related to severe hypoglycemia and lactic acidosis, is rarely reported globally. CASE PRESENTATION We report a case of a new MRPS2 gene mutation in a Chinese girl who presented with hypoglycemia and lactic acidosis. A homozygous C.412C > G variant that could cause complex oxidative phosphorylation deficiency and had not been reported before was identified. The clinical manifestations included recurrent vomiting, hypoglycemia, lactic acidosis, sensorineural hearing loss, and gall bladder calculi. Hypoglycemia and lactic acidosis improved after the administration of sugary liquid and supportive treatments. CONCLUSIONS Recurrent hypoglycemia with lactic acidosis and sensorineural hearing loss should lead to suspicion of mitochondrial defects and the early refinement of genetic tests.
Collapse
Affiliation(s)
- ChangZhi Liu
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| | - WeiRan Zhou
- Jinan Children's Hospital (Qilu Children's Hospital of Shandong University), Jinan, China.
| | - QuanE Liu
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| | - ZaiXin Peng
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| |
Collapse
|
33
|
Pulman J, Ruzzenente B, Horak M, Barcia G, Boddaert N, Munnich A, Rötig A, Metodiev MD. Variants in the MIPEP gene presenting with complex neurological phenotype without cardiomyopathy, impair OXPHOS protein maturation and lead to a reduced OXPHOS abundance in patient cells. Mol Genet Metab 2021; 134:267-273. [PMID: 34620555 DOI: 10.1016/j.ymgme.2021.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/12/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to mitochondria via N-terminal mitochondrial targeting signals (MTS) that are proteolytically removed upon import. Sometimes, MTS removal is followed by a cleavage of an octapeptide by the mitochondrial intermediate peptidase (MIP), encoded by the MIPEP gene. Previously, MIPEP variants were linked to four cases of multisystemic disorder presenting with cardiomyopathy, developmental delay, hypotonia and infantile lethality. We report here a patient carrying compound heterozygous MIPEP variants-one was not previously linked to mitochondrial disease-who did not have cardiomyopathy and who is alive at the age of 20 years. This patient had developmental delay, global hypotonia, mild optic neuropathy and mild ataxia. Functional characterization of patient fibroblasts and HEK293FT cells carrying MIPEP hypomorphic alleles demonstrated that deficient MIP activity was linked to impaired post-import processing of subunits from four of the five OXPHOS complexes and decreased abundance and activity of some of these complexes in human cells possibly underlying the development of mitochondrial disease. Thus, our work expands the genetic and clinical spectrum of MIPEP-linked disease and establishes MIP as an important regulator of OXPHOS biogenesis and function in human cells.
Collapse
Affiliation(s)
- Juliette Pulman
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Benedetta Ruzzenente
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Martin Horak
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Giulia Barcia
- Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker-Enfants-Malades, AP-HP, Université de Paris, INSERM U1163, Institut Imagine, Paris, France
| | - Arnold Munnich
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France; Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Hôpital Necker-Enfants-Malades, Paris, France
| | - Agnès Rötig
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Metodi D Metodiev
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
34
|
Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv 2021; 5:4233-4255. [PMID: 34507353 PMCID: PMC8945617 DOI: 10.1182/bloodadvances.2020003661] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment.
Collapse
|
35
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
36
|
Complexome Profiling: Assembly and Remodeling of Protein Complexes. Int J Mol Sci 2021; 22:ijms22157809. [PMID: 34360575 PMCID: PMC8346016 DOI: 10.3390/ijms22157809] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Many proteins have been found to operate in a complex with various biomolecules such as proteins, nucleic acids, carbohydrates, or lipids. Protein complexes can be transient, stable or dynamic and their association is controlled under variable cellular conditions. Complexome profiling is a recently developed mass spectrometry-based method that combines mild separation techniques, native gel electrophoresis, and density gradient centrifugation with quantitative mass spectrometry to generate inventories of protein assemblies within a cell or subcellular fraction. This review summarizes applications of complexome profiling with respect to assembly ranging from single subunits to large macromolecular complexes, as well as their stability, and remodeling in health and disease.
Collapse
|
37
|
van Strien J, Haupt A, Schulte U, Braun HP, Cabrera-Orefice A, Choudhary JS, Evers F, Fernandez-Vizarra E, Guerrero-Castillo S, Kooij TWA, Páleníková P, Pardo M, Ugalde C, Wittig I, Wöhlbrand L, Brandt U, Arnold S, Huynen MA. CEDAR, an online resource for the reporting and exploration of complexome profiling data. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148411. [PMID: 33722514 DOI: 10.1016/j.bbabio.2021.148411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.
Collapse
Affiliation(s)
- Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Biological Signalling Studies (BIOSS) and Center for Integrative Signalling Studies (CIBSS), 79104 Freiburg, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jyoti S Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Felix Evers
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Cristina Ugalde
- Hospital 12 de Octubre Research Institute, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain
| | - Ilka Wittig
- Functional Proteomics, Medical School, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Arnold
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Alsharhan H, Muraresku C, Ganetzky RD. COXPD9 in an individual from Puerto Rico and literature review. Am J Med Genet A 2021; 185:2519-2525. [PMID: 34008913 DOI: 10.1002/ajmg.a.62344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/07/2022]
Abstract
Defects of mitoribosome assembly with destabilization of mitochondrial ribosomal proteins and subsequent aberrant mitochondrial translation machinery are one of the emerging categories of human mitochondrial disease. Mitochondrial translation deficiency constitutes a growing cause of combined oxidative phosphorylation deficiency and overall causes a set of clinically heterogeneous multi-systemic diseases. We present here the sixth individual with combined oxidative phosphorylation deficiency-9 (COXPD9) secondary to a likely pathogenic homozygous MRPL3 variant c.571A > C; p.(Thr191Pro). MRPL3 encodes a large mitochondrial ribosome subunit protein, impairing the mitochondrial translation and resulting in multisystem disease. Similar to previously reported individuals, this reported female proband presented with psychomotor retardation, sensorineural hearing loss, hypertrophic cardiomyopathy, failure to thrive, and lactic acidosis. Further, she has additional, previously unreported, features including Leigh syndrome, cataracts, hypotonia, scoliosis, myopathy, exercise intolerance, childhood-onset cardiomyopathy, and microcephaly. This subject is the oldest reported individual with COXPD9. This report also summarizes the clinical and molecular data of the previously reported individuals with COXPD9 to describe the full phenotypic spectrum.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Colleen Muraresku
- Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Haumann S, Boix J, Knuever J, Bieling A, Vila Sanjurjo A, Elson JL, Blakely EL, Taylor RW, Riet N, Abken H, Kashkar H, Hornig-Do HT, Wiesner RJ. Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells. Carcinogenesis 2021; 41:1735-1745. [PMID: 32255484 DOI: 10.1093/carcin/bgaa032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.
Collapse
Affiliation(s)
- Sophie Haumann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Julia Boix
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jana Knuever
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Dermatology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Angela Bieling
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anton Vila Sanjurjo
- Grupo GIBE, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne UK
| | - Nicole Riet
- Department I for Internal Medicine, Medical Faculty and University of Cologne, 50931 Cologne, Germany
| | - Hinrich Abken
- Department I for Internal Medicine, Medical Faculty and University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,RCI, Regensburg Center for Interventional Immunology, Chair Gene-Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Hamid Kashkar
- Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute of Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Human Mitoribosome Biogenesis and Its Emerging Links to Disease. Int J Mol Sci 2021; 22:ijms22083827. [PMID: 33917098 PMCID: PMC8067846 DOI: 10.3390/ijms22083827] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize a small subset of proteins, which are essential components of the oxidative phosphorylation machinery. Therefore, their function is of fundamental importance to cellular metabolism. The assembly of mitoribosomes is a complex process that progresses through numerous maturation and protein-binding events coordinated by the actions of several assembly factors. Dysregulation of mitoribosome production is increasingly recognized as a contributor to metabolic and neurodegenerative diseases. In recent years, mutations in multiple components of the mitoribosome assembly machinery have been associated with a range of human pathologies, highlighting their importance to cell function and health. Here, we provide a review of our current understanding of mitoribosome biogenesis, highlighting the key factors involved in this process and the growing number of mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors that lead to human disease.
Collapse
|
41
|
Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D. Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation. Hum Mutat 2021; 42:699-710. [PMID: 33715266 DOI: 10.1002/humu.24195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022]
Abstract
Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Nasca
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Verrigni
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Pennisi
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Giorgia Olivieri
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Zahra Assouline
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Diego Martinelli
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Teresa Rizza
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Di Nottia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Invernizzi
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Longo
- Department of Diagnostic Imaging, Unit of Neuroradiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Agnès Rötig
- UNITE INSERM U1163 Imagine Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Carlo Dionisi-Vici
- Department of Pediatric Subspecialties, Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Ghezzi
- Diagnostic and Technology Department, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
42
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
43
|
Horga A, Manole A, Mitchell AL, Bugiardini E, Hargreaves IP, Mowafi W, Bettencourt C, Blakely EL, He L, Polke JM, Woodward CE, Dalla Rosa I, Shah S, Pittman AM, Quinlivan R, Reilly MM, Taylor RW, Holt IJ, Hanna MG, Pitceathly RDS, Spinazzola A, Houlden H. Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Mol Biol Rep 2021; 48:2093-2104. [PMID: 33742325 DOI: 10.1007/s11033-021-06188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.
Collapse
Affiliation(s)
- Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Walied Mowafi
- Neurosciences Department, Calderdale Royal Hospital, Halifax, HX3 0PW, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Emma L Blakely
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James M Polke
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Catherine E Woodward
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Alan M Pittman
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert W Taylor
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Antonella Spinazzola
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
44
|
Role of GTPases in Driving Mitoribosome Assembly. Trends Cell Biol 2021; 31:284-297. [PMID: 33419649 DOI: 10.1016/j.tcb.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023]
Abstract
Mitoribosomes catalyze essential protein synthesis within mitochondria. Mitoribosome biogenesis is assisted by an increasing number of assembly factors, among which guanosine triphosphate hydrolases (GTPases) are the most abundant class. Here, we review recent progress in our understanding of mitoribosome assembly GTPases. We describe their shared and specific features and mechanisms of action, compare them with their bacterial counterparts, and discuss their possible roles in the assembly of small or large mitoribosomal subunits and the formation of the monosome by establishing quality-control checkpoints during these processes. Furthermore, following the recent unification of the nomenclature for the mitoribosomal proteins, we also propose a unified nomenclature for mitoribosome assembly GTPases.
Collapse
|
45
|
Abstract
Complexome profiling combines blue native gel electrophoresis (BNE) and quantitative mass spectrometry to define an entire protein interactome of a cell, an organelle, or a biological membrane preparation. The method allows the identification of protein assemblies with low abundance and detects dynamic processes of protein complex assembly. Applications of complexome profiling range from the determination of complex subunit compositions, assembly of single protein complexes, and supercomplexes to comprehensive differential studies between patients or disease models. This chapter describes the workflow of complexome profiling from sample preparation, mass spectrometry to data analysis with a bioinformatics tool.
Collapse
Affiliation(s)
- Heiko Giese
- Molecular Bioinformatics, Institute of Computer Science, Goethe-University, Frankfurt am Main, Germany
| | - Jana Meisterknecht
- Functional Proteomics, ZBC, Goethe-University, Frankfurt am Main, Germany
| | - Juliana Heidler
- Functional Proteomics, ZBC, Goethe-University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, ZBC, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
47
|
Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases. Int J Mol Sci 2020; 21:ijms21228879. [PMID: 33238645 PMCID: PMC7700125 DOI: 10.3390/ijms21228879] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors. This paper reviews the basic structure of mitochondrial ribosome, focuses on the structure and function of MRPs, and their relationships with cell apoptosis and diseases. It provides a reference for the study of the function of MRPs and the disease diagnosis and treatment.
Collapse
|
48
|
Wang S, Wang R, Li GQ, Cho JL, Deng Y, Li Y. Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy. J Proteomics 2020; 231:104001. [PMID: 33035716 DOI: 10.1016/j.jprot.2020.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Microgravity induces injury of intestinal barrier. However, the underlying mechanism remains unclear. The present study aimed to investigate the pathological change of intestinal mucosa induced by long term simulated microgravity and to explore its etiological mechanism using a proteomic approach. The well accepted tail-suspended rat model was used to simulate microgravity. The damage of rat small intestine was evaluated via histological and molecular test, and a label-free comparative proteomic strategy was used to determine the molecular mechanism. Simulated microgravity for 21 days damaged intestine barrier with decreased numbers of the goblet cells, large intercellular space, and down-regulated adhesion molecules, accompanied by increased intestinal permeability. Proteomic analysis identified 416 differentially expressed proteins and showed simulated microgravity dramatically down-regulated the adhesion molecules and deteriorated several pathways for metabolism, focal adhesion, and regulation of actin cytoskeleton. Western-blot analysis confirmed that myosin regulatory light chain (MLC) 12B was significantly down-regulated, while rho-associated protein kinase, myosin light chain kinase (MLCK), and phosphorylated MLC were dramatically up-regulated. Taken together, these data reveal that down-regulation of adhesion molecules and MLCK dependent up-regulation MLC phosphorylation mediate intestinal barrier dysfunction during simulated microgravity injury. Our results also indicate that regulation of epithelial MLCK is a potential target for the therapeutic treatment of microgravity injury.
Collapse
Affiliation(s)
- Shibo Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - George Q Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jun-Lae Cho
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
49
|
Mitochondrial Dysfunction and Therapeutic Targets in Auditory Neuropathy. Neural Plast 2020; 2020:8843485. [PMID: 32908487 PMCID: PMC7474759 DOI: 10.1155/2020/8843485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022] Open
Abstract
Sensorineural hearing loss (SNHL) becomes an inevitable worldwide public health issue, and deafness treatment is urgently imperative; yet their current curative therapy is limited. Auditory neuropathies (AN) were proved to play a substantial role in SNHL recently, and spiral ganglion neuron (SGN) dysfunction is a dominant pathogenesis of AN. Auditory pathway is a high energy consumption system, and SGNs required sufficient mitochondria. Mitochondria are known treatment target of SNHL, but mitochondrion mechanism and pathology in SGNs are not valued. Mitochondrial dysfunction and pharmacological therapy were studied in neurodegeneration, providing new insights in mitochondrion-targeted treatment of AN. In this review, we summarized mitochondrial biological functions related to SGNs and discussed interaction between mitochondrial dysfunction and AN, as well as existing mitochondrion treatment for SNHL. Pharmaceutical exploration to protect mitochondrion dysfunction is a feasible and effective therapeutics for AN.
Collapse
|
50
|
Aibara S, Singh V, Modelska A, Amunts A. Structural basis of mitochondrial translation. eLife 2020; 9:58362. [PMID: 32812867 PMCID: PMC7438116 DOI: 10.7554/elife.58362] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Translation of mitochondrial messenger RNA (mt-mRNA) is performed by distinct mitoribosomes comprising at least 36 mitochondria-specific proteins. How these mitoribosomal proteins assist in the binding of mt-mRNA and to what extent they are involved in the translocation of transfer RNA (mt-tRNA) is unclear. To visualize the process of translation in human mitochondria, we report ~3.0 Å resolution structure of the human mitoribosome, including the L7/L12 stalk, and eight structures of its functional complexes with mt-mRNA, mt-tRNAs, recycling factor and additional trans factors. The study reveals a transacting protein module LRPPRC-SLIRP that delivers mt-mRNA to the mitoribosomal small subunit through a dedicated platform formed by the mitochondria-specific protein mS39. Mitoribosomal proteins of the large subunit mL40, mL48, and mL64 coordinate translocation of mt-tRNA. The comparison between those structures shows dynamic interactions between the mitoribosome and its ligands, suggesting a sequential mechanism of conformational changes.
Collapse
Affiliation(s)
- Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Modelska
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|