1
|
Marchi N, Kapopoulou A, Excoffier L. Demogenomic inference from spatially and temporally heterogeneous samples. Mol Ecol Resour 2024; 24:e13877. [PMID: 37819677 DOI: 10.1111/1755-0998.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Modern and ancient genomes are not necessarily drawn from homogeneous populations, as they may have been collected from different places and at different times. This heterogeneous sampling can be an issue for demographic inferences and results in biased demographic parameters and incorrect model choice if not properly considered. When explicitly accounted for, it can result in very complex models and high data dimensionality that are difficult to analyse. In this paper, we formally study the impact of such spatial and temporal sampling heterogeneity on demographic inference, and we introduce a way to circumvent this problem. To deal with structured samples without increasing the dimensionality of the site frequency spectrum (SFS), we introduce a new structured approach to the existing program fastsimcoal2. We assess the efficiency and relevance of this methodological update with simulated and modern human genomic data. We particularly focus on spatial and temporal heterogeneities to evidence the interest of this new SFS-based approach, which can be especially useful when handling scattered and ancient DNA samples, as in conservation genetics or archaeogenetics.
Collapse
Affiliation(s)
- Nina Marchi
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Excoffier
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
2
|
Graves JL. Favored Races in the Struggle for Life: Racism and the Speciation Concept. Cold Spring Harb Perspect Biol 2023; 15:a041454. [PMID: 37463717 PMCID: PMC10411861 DOI: 10.1101/cshperspect.a041454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evolutionary speciation, whether it be cladistic or phyletic, has always been associated with race concepts. Biological races are conceived as definable stages of divergence from a common ancestor. However, the species concept in Western science began within a special creationist framework. The sixteenth century European voyages of discovery resulted in special creationist schemes explaining the origin of the new peoples encountered. These were designed to provide the moral justification for their colonization and enslavement. By the seventeenth century, European naturalists were beginning to seriously question the meaning of the variation within the animals and plants they observed within the context of God's role in creation. By the middle of the nineteenth century, "the species question" was the most important intellectual enterprise within biology. Here I discuss how notions of speciation influenced and were influenced by conceptions of race within Homo sapiens.
Collapse
Affiliation(s)
- Joseph L Graves
- Department of Biological Sciences, North Carolina A&T State University, Greensboro, North Carolina 27410, USA
| |
Collapse
|
3
|
Ragsdale AP, Weaver TD, Atkinson EG, Hoal EG, Möller M, Henn BM, Gravel S. A weakly structured stem for human origins in Africa. Nature 2023; 617:755-763. [PMID: 37198480 PMCID: PMC10208968 DOI: 10.1038/s41586-023-06055-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Despite broad agreement that Homo sapiens originated in Africa, considerable uncertainty surrounds specific models of divergence and migration across the continent1. Progress is hampered by a shortage of fossil and genomic data, as well as variability in previous estimates of divergence times1. Here we seek to discriminate among such models by considering linkage disequilibrium and diversity-based statistics, optimized for rapid, complex demographic inference2. We infer detailed demographic models for populations across Africa, including eastern and western representatives, and newly sequenced whole genomes from 44 Nama (Khoe-San) individuals from southern Africa. We infer a reticulated African population history in which present-day population structure dates back to Marine Isotope Stage 5. The earliest population divergence among contemporary populations occurred 120,000 to 135,000 years ago and was preceded by links between two or more weakly differentiated ancestral Homo populations connected by gene flow over hundreds of thousands of years. Such weakly structured stem models explain patterns of polymorphism that had previously been attributed to contributions from archaic hominins in Africa2-7. In contrast to models with archaic introgression, we predict that fossil remains from coexisting ancestral populations should be genetically and morphologically similar, and that only an inferred 1-4% of genetic differentiation among contemporary human populations can be attributed to genetic drift between stem populations. We show that model misspecification explains the variation in previous estimates of divergence times, and argue that studying a range of models is key to making robust inferences about deep history.
Collapse
Affiliation(s)
- Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brenna M Henn
- Department of Anthropology, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
An etiology of human modernity. ANTHROPOLOGICAL REVIEW 2021. [DOI: 10.2478/anre-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Following the refutation of the replacement hypothesis, which had proposed that a ‘superior’ hominin species arose in Africa and replaced all other humans existing at the time, the auto-domestication hypothesis remains the only viable explanation for the relatively abrupt change from robust to gracile humans in the Late Pleistocene. It invokes the incidental institution of the domestication syndrome in humans, most probably by newly introduced cultural practices. It also postulates that the induction of exograms compensated for the atrophy of the brain caused by domestication. This new explanation of the origins of modernity in humans elucidates practically all its many aspects, in stark contrast to the superseded replacement hypothesis, which explained virtually nothing. The first results of the domestication syndrome’s genetic exploration have become available in recent years, and they endorse the human self-domestication hypothesis.
Collapse
|
6
|
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biol Evol 2021; 13:evab115. [PMID: 34028527 PMCID: PMC8480178 DOI: 10.1093/gbe/evab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
The archaic ancestry present in the human genome has captured the imagination of both scientists and the wider public in recent years. This excitement is the result of new studies pushing the envelope of what we can learn from the archaic genetic information that has survived for over 50,000 years in the human genome. Here, we review the most recent ten years of literature on the topic of archaic introgression, including the current state of knowledge on Neanderthal and Denisovan introgression, as well as introgression from other as-yet unidentified archaic populations. We focus this review on four topics: 1) a reimagining of human demographic history, including evidence for multiple admixture events between modern humans, Neanderthals, Denisovans, and other archaic populations; 2) state-of-the-art methods for detecting archaic ancestry in population-level genomic data; 3) how these novel methods can detect archaic introgression in modern African populations; and 4) the functional consequences of archaic gene variants, including how those variants were co-opted into novel function in modern human populations. The goal of this review is to provide a simple-to-access reference for the relevant methods and novel data, which has changed our understanding of the relationship between our species and its siblings. This body of literature reveals the large degree to which the genetic legacy of these extinct hominins has been integrated into the human populations of today.
Collapse
Affiliation(s)
- K D Ahlquist
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mayra M Bañuelos
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jiaying Lai
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Fernando A Villanea
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Anthropology, University of Colorado Boulder, Colorado, USA
| | - Kelsey E Witt
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
Hollfelder N, Breton G, Sjödin P, Jakobsson M. The deep population history in Africa. Hum Mol Genet 2021; 30:R2-R10. [PMID: 33438014 PMCID: PMC8117439 DOI: 10.1093/hmg/ddab005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Africa is the continent with the greatest genetic diversity among humans and the level of diversity is further enhanced by incorporating non-majority groups, which are often understudied. Many of today's minority populations historically practiced foraging lifestyles, which were the only subsistence strategies prior to the rise of agriculture and pastoralism, but only a few groups practicing these strategies remain today. Genomic investigations of Holocene human remains excavated across the African continent show that the genetic landscape was vastly different compared to today's genetic landscape and that many groups that today are population isolate inhabited larger regions in the past. It is becoming clear that there are periods of isolation among groups and geographic areas, but also genetic contact over large distances throughout human history in Africa. Genomic information from minority populations and from prehistoric remains provide an invaluable source of information on the human past, in particular deep human population history, as Holocene large-scale population movements obscure past patterns of population structure. Here we revisit questions on the nature and time of the radiation of early humans in Africa, the extent of gene-flow among human populations as well as introgression from archaic and extinct lineages on the continent.
Collapse
Affiliation(s)
- Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Gwenna Breton
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Physical, Cnr Kingsway & University Roads, Auckland Park, Johannesburg 2092, South Africa
- SciLifeLab, Stockholm and Uppsala, Entrance C11, BMC, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
8
|
Bergström A, Stringer C, Hajdinjak M, Scerri EML, Skoglund P. Origins of modern human ancestry. Nature 2021; 590:229-237. [PMID: 33568824 DOI: 10.1038/s41586-021-03244-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
New finds in the palaeoanthropological and genomic records have changed our view of the origins of modern human ancestry. Here we review our current understanding of how the ancestry of modern humans around the globe can be traced into the deep past, and which ancestors it passes through during our journey back in time. We identify three key phases that are surrounded by major questions, and which will be at the frontiers of future research. The most recent phase comprises the worldwide expansion of modern humans between 40 and 60 thousand years ago (ka) and their last known contacts with archaic groups such as Neanderthals and Denisovans. The second phase is associated with a broadly construed African origin of modern human diversity between 60 and 300 ka. The oldest phase comprises the complex separation of modern human ancestors from archaic human groups from 0.3 to 1 million years ago. We argue that no specific point in time can currently be identified at which modern human ancestry was confined to a limited birthplace, and that patterns of the first appearance of anatomical or behavioural traits that are used to define Homo sapiens are consistent with a range of evolutionary histories.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Chris Stringer
- Department of Earth Sciences, Natural History Museum, London, UK.
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Science of Human History, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Institute of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Global Picture of Genetic Relatedness and the Evolution of Humankind. BIOLOGY 2020; 9:biology9110392. [PMID: 33182715 PMCID: PMC7696950 DOI: 10.3390/biology9110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary The intricacies of human ancestry are buried deep within our DNA. For years, scientists have been working to piece together a vast picture of our genetic lineage. The purpose of this study was to further reveal this global picture of human genetic relatedness using identical-by-descent (IBD) genomic fragments. We processed over 65 million very rare single nucleotide polymorphic (SNP) alleles and detected over 17 million shared IBD fragments, including very short IBD fragments that allowed us to trace common ancestors back to 200,000 years ago. We also determined nine geographical regions representing nine unique genetic components for mankind: East and West Africa, Northern Europe, Arctica, East Asia, Oceania, South Asia, Middle East, and South America. The levels of admixture in every studied population could be assigned to one of these regions and long-term neighboring populations are strikingly similar, despite any political, religious, and cultural differences. Additionally, we observed the topmost admixture to be in central Eurasia. The entire picture of relatedness of all the studied populations presents itself in the form of shared number/size of IBDs, providing novel insights into geographical admixtures and genetic contributions that shaped human ancestry into what it is today. Abstract We performed an exhaustive pairwise comparison of whole-genome sequences of 3120 individuals, representing 232 populations from all continents and seven prehistoric people including archaic and modern humans. In order to reveal an intricate picture of worldwide human genetic relatedness, 65 million very rare single nucleotide polymorphic (SNP) alleles have been bioinformatically processed. The number and size of shared identical-by-descent (IBD) genomic fragments for every pair of 3127 individuals have been revealed. Over 17 million shared IBD fragments have been described. Our approach allowed detection of very short IBD fragments (<20 kb) that trace common ancestors who lived up to 200,000 years ago. We detected nine distinct geographical regions within which individuals had strong genetic relatedness, but with negligible relatedness between the populations of these regions. The regions, comprising nine unique genetic components for mankind, are the following: East and West Africa, Northern Europe, Arctica, East Asia, Oceania, South Asia, Middle East, and South America. The level of admixture in every studied population has been apportioned among these nine genetic components. Genetically, long-term neighboring populations are strikingly similar to each other in spite of any political, religious, and cultural differences. The topmost admixture has been observed at the center of Eurasia. These admixed populations (including Uyghurs, Azerbaijanis, Uzbeks, and Iranians) have roughly equal genetic contributions from the Middle East, Europe, China, and India, with additional significant traces from Africa and Arctic. The entire picture of relatedness of all the studied populations unfolds and presents itself in the form of shared number/size of IBDs.
Collapse
|
10
|
Pearson OM, Hill EC, Peppe DJ, Van Plantinga A, Blegen N, Faith JT, Tryon CA. A Late Pleistocene human humerus from Rusinga Island, Lake Victoria, Kenya. J Hum Evol 2020; 146:102855. [PMID: 32781348 DOI: 10.1016/j.jhevol.2020.102855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
In 2010, a hominin right humerus fragment (KNM-RU 58330) was surface collected in a small gully at Nyamita North in the Late Pleistocene Wasiriya Beds of Rusinga Island, Kenya. A combination of stratigraphic and geochronological evidence suggests the specimen is likely between ∼49 and 36 ka in age. The associated fauna is diverse and dominated by semiarid grassland taxa. The small sample of associated Middle Stone Age artifacts includes Levallois flakes, cores, and retouched points. The 139 mm humeral fragment preserves the shaft from distal to the lesser tubercle to 14 mm below the distal end of the weakly projecting deltoid tuberosity. Key morphological features include a narrow and weakly marked pectoralis major insertion and a distinctive medial bend in the diaphysis at the deltoid insertion. This bend is unusual among recent human humeri but occurs in a few Late Pleistocene humeri. The dimensions of the distal end of the fragment predict a length of 317.9 ± 16.4 mm based on recent samples of African ancestry. A novel method of predicting humeral length from the distance between the middle of the pectoralis major and the bottom of the deltoid insertion predicts a length of 317.3 mm ± 17.6 mm. Cross-sectional geometry at the midshaft shows a relatively high percentage of cortical bone and a moderate degree of flattening of the shaft. The Nyamita humerus is anatomically modern in its morphology and adds to the small sample of hominins from the Late Pleistocene associated with Middle Stone Age artifacts known from East Africa. It may sample a population closely related to the people of the out-of-Africa migration.
Collapse
Affiliation(s)
- Osbjorn M Pearson
- Department of Anthropology, MSC01-1040, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Ethan C Hill
- Department of Anthropology, MSC01-1040, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel J Peppe
- Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, Waco, TX, 76706, USA
| | - Alex Van Plantinga
- Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, Waco, TX, 76706, USA
| | - Nick Blegen
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
| | - J Tyler Faith
- Natural History Museum of Utah, Rio Tinto Center, 301 Wakara Way, Salt Lake City, UT, 84108, USA; Department of Anthropology, University of Utah, 260 S. Central Campus Drive, Salt Lake City, UT, 84112, USA
| | - Christian A Tryon
- Department of Anthropology, University of Connecticut, 354 Mansfield Road, Storrs, CT, 06269, USA
| |
Collapse
|
11
|
Mughal MR, Koch H, Huang J, Chiaromonte F, DeGiorgio M. Learning the properties of adaptive regions with functional data analysis. PLoS Genet 2020; 16:e1008896. [PMID: 32853200 PMCID: PMC7480868 DOI: 10.1371/journal.pgen.1008896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/09/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying regions of positive selection in genomic data remains a challenge in population genetics. Most current approaches rely on comparing values of summary statistics calculated in windows. We present an approach termed SURFDAWave, which translates measures of genetic diversity calculated in genomic windows to functional data. By transforming our discrete data points to be outputs of continuous functions defined over genomic space, we are able to learn the features of these functions that signify selection. This enables us to confidently identify complex modes of natural selection, including adaptive introgression. We are also able to predict important selection parameters that are responsible for shaping the inferred selection events. By applying our model to human population-genomic data, we recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans, and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802 generations ago, a time when humans were relatively new to Europe. In addition, we identify BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a beneficial mutation that arose in an archaic human population that split from modern humans within the hypothesized modern human-Neanderthal divergence range.
Collapse
Affiliation(s)
- Mehreen R. Mughal
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillary Koch
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jinguo Huang
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
12
|
Sankararaman S. Methods for detecting introgressed archaic sequences. Curr Opin Genet Dev 2020; 62:85-90. [PMID: 32717667 PMCID: PMC7484293 DOI: 10.1016/j.gde.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Analysis of genome sequences from archaic and modern humans have revealed multiple episodes of admixture between highly-diverged population groups. Statistical methods that attempt to localize DNA segments introduced by these events offer a powerful tool to investigate recent human evolution. We review recent advances in methods for detecting introgressed sequences.
Collapse
Affiliation(s)
- Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, CA 90095, United States; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Department of Computational Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|