1
|
El Fessikh M, Skhoun H, Ouzzif Z, El Baghdadi J. Deciphering deleterious missense variants in the MC4R gene in the pathogenesis of obesity. ENDOCRINOL DIAB NUTR 2025; 72:501559. [PMID: 40221191 DOI: 10.1016/j.endien.2025.501559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/09/2024] [Indexed: 04/14/2025]
Abstract
The MC4R gene plays a critical role in regulating food intake, making it an important model for studying genetic mutations that impact the protein function. This study aimed to identify the most deleterious functional and structural variants in individuals with obesity by analyzing SNPs from the NCBI dbSNP database and selecting pathogenic variants from ClinVar. Bioinformatics tools were employed to predict deleterious SNPs, and conservation analysis was performed using ConSurf. Stability predictions were made with MUpro, I-Mutant2.0, and iStable. The 3D structure of the MC4R protein was examined using YASARA view. A total of 20 out of 348 missense mutations were associated with obesity. Fifteen of these variants were predicted to be the most deleterious. Eight variants located in conserved regions were found to significantly reduce protein stability and cause structural changes (S58C, E61K, N62S, I69R, D90N, R165Q, P299H, and I316S), indicating their potential as obesity biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
2
|
Felsky D. Predicting Cardiometabolic Risk in American Indian Adults-Moving Away From Heritability Without Heritage. JAMA Netw Open 2025; 8:e250545. [PMID: 40072441 DOI: 10.1001/jamanetworkopen.2025.0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Affiliation(s)
- Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Köroğlu Ç, Chen P, Traurig M, Altok S, Bogardus C, Baier LJ. De Novo Genome Assemblies From Two Indigenous Americans from Arizona Identify New Polymorphisms in Non-Reference Sequences. Genome Biol Evol 2024; 16:evae188. [PMID: 39190003 PMCID: PMC11384899 DOI: 10.1093/gbe/evae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
There is a collective push to diversify human genetic studies by including underrepresented populations. However, analyzing DNA sequence reads involves the initial step of aligning the reads to the GRCh38/hg38 reference genome which is inadequate for non-European ancestries. In this study, using long-read sequencing technology, we constructed de novo genome assemblies from two indigenous Americans from Arizona (IAZ). Each assembly included ∼17 Mb of DNA sequence not present [nonreference sequence (NRS)] in hg38, which consists mostly of repeat elements. Forty NRSs totaling 240 kb were uniquely anchored to the hg38 primary assembly generating a modified hg38-NRS reference genome. DNA sequence alignment and variant calling were then conducted with whole-genome sequencing (WGS) sequencing data from 387 IAZ using both the hg38 and modified hg38-NRS reference maps. Variant calling with the hg38-NRS map identified ∼50,000 single-nucleotide variants present in at least 5% of the WGS samples which were not detected with the hg38 reference map. We also directly assessed the NRSs positioned within genes. Seventeen NRSs anchored to regions including an identical 187 bp NRS found in both de novo assemblies. The NRS is located in HCN2 79 bp downstream of Exon 3 and contains several putative transcriptional regulatory elements. Genotyping of the HCN2-NRS revealed that the insertion is enriched in IAZ (minor allele frequency = 0.45) compared to other reference populations tested. This study shows that inclusion of population-specific NRSs can dramatically change the variant profile in an underrepresented ethnic groups and thereby lead to the discovery of previously missed common variations.
Collapse
Affiliation(s)
- Çiğdem Köroğlu
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | - Peng Chen
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | - Michael Traurig
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | - Serdar Altok
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | - Clifton Bogardus
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA
| |
Collapse
|
4
|
Looker HC, Chang DC, Baier LJ, Hanson RL, Nelson RG. Diagnostic criteria and etiopathogenesis of type 2 diabetes and its complications: Lessons from the Pima Indians. Presse Med 2023; 52:104176. [PMID: 37783422 PMCID: PMC10805453 DOI: 10.1016/j.lpm.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Phoenix Epidemiology and Clinical Research Branch of the National Institute of Diabetes and Digestive and Kidney Diseases has conducted prospective studies of diabetes and its complications in the Pima Indians living in Arizona, USA for over 50 years. In this review we highlight areas in which these studies provided vital insights into the criteria used to diagnose type 2 diabetes, the pathophysiologic changes that accompany the development of type 2 diabetes, and the course and determinants of diabetes complications-focusing specifically on diabetic kidney disease. We include data from our longitudinal population-based study of diabetes and its complications, studies on the role of insulin resistance and insulin secretion in the pathophysiology of type 2 diabetes, and in-depth studies of diabetic kidney disease that include measures of glomerular function and research kidney biopsies. We also focus on the emerging health threat posed by youth-onset type 2 diabetes, which was first seen in the Pima Indians in the 1960s and is becoming an increasing issue worldwide.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert L Hanson
- Diabetes Genetic Epidemiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Manderstedt E, Lind‐Halldén C, Halldén C, Elf J, Svensson PJ, Engström G, Melander O, Baras A, Lotta LA, Zöller B. Genetic variation of the blood coagulation regulator tissue factor pathway inhibitor and venous thromboembolism among middle-aged and older adults: A population-based cohort study. Res Pract Thromb Haemost 2022; 6:e12842. [PMID: 36381289 PMCID: PMC9644338 DOI: 10.1002/rth2.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Tissue factor is the main initiator of blood coagulation, and tissue factor pathway inhibitor (TFPI) is the primary inhibitor of the initiation of blood coagulation.The genetic variation of TFPI and the relation to venous thromboembolism (VTE), that is, venous thrombosis and pulmonary embolism, remains to be clarified. This exome sequencing study aimed to determine the molecular epidemiology of the TFPI gene and the relation to VTE in a large population-based cohort of middle-aged and older adults. Methods The exomes of TFPI were analyzed for variants in 28,794 subjects without previous VTE (born 1923-1950, 60% women), who participated in the Malmö Diet and Cancer Study (1991-1996). Patients were followed until the first event of VTE, death, or 2018. Qualifying variants were defined as loss-of-function or nonbenign (PolyPhen-2) missense variants with minor allele frequency less than 0.1%. Results No common variant was associated with VTE. Nine rare variants (two loss-of-function and seven nonbenign missense) were classified as qualifying and included in collapsing analysis. Prevalence of qualifying variants was 0.09%. Five individuals with VTE compared to 17 individuals without VTE carried one qualifying variant. Cox multivariate regression analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking and alcohol consumption, rs6025, rs1799963, and ancestry showed a hazard ratio of 2.9 (95% CI, 1.2-7.1) for rare qualifying variants. Conclusion Rare qualifying TFPI variants were associated with VTE, suggesting that rare variants in TFPI contribute to the development of VTE. The qualifying TFPI gene variants were very rare, suggesting a constrained gene.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Christina Lind‐Halldén
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Christer Halldén
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Johan Elf
- Department of Clinical SciencesLund University, Skåne University HospitalMalmöSweden
| | - Peter J. Svensson
- Department of Clinical SciencesLund University, Skåne University HospitalMalmöSweden
| | - Gunnar Engström
- Department of Clinical SciencesLund University, Skåne University HospitalMalmöSweden
| | - Olle Melander
- Department of Clinical SciencesLund University, Skåne University HospitalMalmöSweden
| | - Aris Baras
- Regeneron Genetics CenterTarrytownNew YorkUSA
| | | | - Bengt Zöller
- Center for Primary Health Care ResearchLund University and Region SkåneMalmöSweden
| |
Collapse
|
6
|
Muller YL, Saporito M, Day S, Bandesh K, Koroglu C, Kobes S, Knowler WC, Hanson RL, Van Hout CV, Shuldiner AR, Bogardus C, Baier LJ. Functional characterization of a novel p.Ser76Thr variant in IGFBP4 that associates with body mass index in American Indians. Eur J Hum Genet 2022; 30:1159-1166. [PMID: 35688891 PMCID: PMC9554187 DOI: 10.1038/s41431-022-01129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor binding protein 4 (IGFBP4) is involved in adipogenesis, and IGFBP4 null mice have decreased body fat through decreased PPAR-γ expression. In the current study, we assessed whether variation in the IGFBP4 coding region influences body mass index (BMI) in American Indians who are disproportionately affected by obesity. Whole exome sequence data from a population-based sample of 6779 American Indians with longitudinal measures of BMI were used to identify variation in IGFBP4 that associated with BMI. A novel variant that predicts a p.Ser76Thr in IGFBP4 (Thr-allele frequency = 0.02) was identified which associated with the maximum BMI measured during adulthood (BMI 39.8 kg/m2 for Thr-allele homozygotes combined with heterozygotes vs. 36.2 kg/m2 for Ser-allele homozygotes, β = 6.7% per Thr-allele, p = 8.0 × 10-5, adjusted for age, sex, birth-year and the first five genetic principal components) and the maximum age- and sex-adjusted BMI z-score measured during childhood/adolescence (z-score 0.70 SD for Thr-allele heterozygotes vs. 0.32 SD for Ser-allele homozygotes, β = 0.37 SD per Thr-allele, p = 8.8 × 10-6). In vitro functional studies showed that IGFBP4 with the Thr-allele (BMI-increasing) had a 55% decrease (p = 0.0007) in FOXO-induced transcriptional activity, reflecting increased activation of the PI3K/AKT pathway mediated through increased IGF signaling. Over-expression and knock-down of IGFBP4 in OP9 cells during differentiation showed that IGFBP4 upregulates adipogenesis through PPARγ, CEBPα, AGPAT2 and SREBP1 expression. We propose that this American Indian specific variant in IGFBP4 affects obesity via an increase of IGF signaling.
Collapse
Affiliation(s)
- Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| | - Michael Saporito
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Samantha Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Khushdeep Bandesh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Cigdem Koroglu
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
- Laboratorio Internacional de Investigation sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autonoma de Mexico, Queretaro, QRO, Mexico
| | - Alan R Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
7
|
Developing CIRdb as a catalog of natural genetic variation in the Canary Islanders. Sci Rep 2022; 12:16132. [PMID: 36168029 PMCID: PMC9514705 DOI: 10.1038/s41598-022-20442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The current inhabitants of the Canary Islands have a unique genetic makeup in the European diversity landscape due to the existence of African footprints from recent admixture events, especially of North African components (> 20%). The underrepresentation of non-Europeans in genetic studies and the sizable North African ancestry, which is nearly absent from all existing catalogs of worldwide genetic diversity, justify the need to develop CIRdb, a population-specific reference catalog of natural genetic variation in the Canary Islanders. Based on array genotyping of the selected unrelated donors and comparisons against available datasets from European, sub-Saharan, and North African populations, we illustrate the intermediate genetic differentiation of Canary Islanders between Europeans and North Africans and the existence of within-population differences that are likely driven by genetic isolation. Here we describe the overall design and the methods that are being implemented to further develop CIRdb. This resource will help to strengthen the implementation of Precision Medicine in this population by contributing to increase the diversity in genetic studies. Among others, this will translate into improved ability to fine map disease genes and simplify the identification of causal variants and estimate the prevalence of unattended Mendelian diseases.
Collapse
|
8
|
Common and Rare PCSK9 Variants Associated with Low-Density Lipoprotein Cholesterol Levels and the Risk of Diabetes Mellitus: A Mendelian Randomization Study. Int J Mol Sci 2022; 23:ijms231810418. [PMID: 36142332 PMCID: PMC9499600 DOI: 10.3390/ijms231810418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
PCSK9 is a candidate locus for low-density lipoprotein cholesterol (LDL-C) levels. The cause–effect relationship between LDL-C levels and diabetes mellitus (DM) has been suggested to be mechanism-specific. To identify the role of PCSK9 and genome-wide association study (GWAS)-significant variants in LDL-C levels and the risk of DM by using Mendelian randomization (MR) analysis, a total of 75,441 Taiwan Biobank (TWB) participants was enrolled for a GWAS to determine common and rare PCSK9 variants and their associations with LDL-C levels. MR studies were also conducted to determine the association of PCSK9 variants and LDL-C GWAS-associated variants with DM. A regional plot association study with conditional analysis of the PCSK9 locus revealed that PCSK9 rs10788994, rs557211, rs565436, and rs505151 exhibited genome-wide significant associations with serum LDL-C levels. Imputation data revealed that three rare nonsynonymous mutations—namely, rs151193009, rs768846693, and rs757143429—exhibited genome-wide significant association with LDL-C levels. A stepwise regression analysis indicated that seven variants exhibited independent associations with LDL-C levels. On the basis of two-stage least squares regression (2SLS), MR analyses conducted using weighted genetic risk scores (WGRSs) of seven PCSK9 variants or WGRSs of 41 LDL-C GWAS-significant variants revealed significant association with prevalent DM (p = 0.0098 and 5.02 × 10−7, respectively), which became nonsignificant after adjustment for LDL-C levels. A sensitivity analysis indicated no violation of the exclusion restriction assumption regarding the influence of LDL-C-level-determining genotypes on the risk of DM. Common and rare PCSK9 variants are independently associated with LDL-C levels in the Taiwanese population. The results of MR analyses executed using genetic instruments based on WGRSs derived from PCSK9 variants or LDL-C GWAS-associated variants demonstrate an inverse association between LDL-C levels and DM.
Collapse
|
9
|
Manderstedt E, Halldén C, Lind‐Halldén C, Elf J, Svensson PJ, Engström G, Melander O, Baras A, Lotta LA, Zöller B. Thrombotic risk determined by rare and common SERPINA1 variants in a population-based cohort study. J Thromb Haemost 2022; 20:1421-1427. [PMID: 35263815 PMCID: PMC9314614 DOI: 10.1111/jth.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Severe alpha-1-antitrypsin deficiency (AATD), phenotype PiZZ, was associated with venous thromboembolism (VTE) in a case-control study. OBJECTIVES This study aimed to determine the genetic variation in the SERPINA1 gene and a possible thrombotic risk of these variants in a population-based cohort study. PATIENTS/METHODS The coding sequence of SERPINA1 was analyzed for the Z (rs28929474), S (rs17580), and other qualifying variants in 28,794 subjects without previous VTE (born 1923-1950, 60% women), who participated in the Malmö Diet and Cancer study (1991-1996). Individuals were followed from baseline until the first event of VTE, death, or 2018. RESULTS Resequencing the coding sequence of SERPINA1 identified 84 variants in the total study population, 21 synonymous, 62 missense, and 1 loss-of-function variant. Kaplan-Meier analysis showed that homozygosity for the Z allele increased the risk of VTE whereas heterozygosity showed no effect. The S (rs17580) variant was not associated with VTE. Thirty-one rare variants were qualifying and included in collapsing analysis using the following selection criteria, loss of function, in frame deletion or non-benign (PolyPhen-2) missense variants with minor allele frequency (MAF) <0.1%. Combining the rare qualifying variants with the Z variant showed that carrying two alleles (ZZ or compound heterozygotes) showed increased risk. Cox regression analysis revealed an adjusted hazard ratio of 4.5 (95% confidence interval 2.0-10.0) for combinations of the Z variant and rare qualifying variants. One other variant (rs141620200; MAF = 0.002) showed an increased risk of VTE. CONCLUSIONS The SERPINA1 ZZ genotype and compound heterozygotes for severe AATD are rare but associated with VTE in a population-based Swedish study.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Christer Halldén
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Christina Lind‐Halldén
- Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
| | - Johan Elf
- Department of Clinical SciencesSkåne University HospitalLund UniversityMalmöSweden
| | - Peter J. Svensson
- Department of Clinical SciencesSkåne University HospitalLund UniversityMalmöSweden
| | - Gunnar Engström
- Department of Clinical SciencesSkåne University HospitalLund UniversityMalmöSweden
| | - Olle Melander
- Department of Clinical SciencesSkåne University HospitalLund UniversityMalmöSweden
| | - Aris Baras
- Regeneron Genetics CenterTarrytownNew YorkUSA
| | | | - Bengt Zöller
- Center for Primary Health Care ResearchLund University and Region SkåneMalmöSweden
| |
Collapse
|
10
|
Manderstedt E, Halldén C, Lind-Halldén C, Elf J, Svensson PJ, Engström G, Melander O, Baras A, Lotta LA, Zöller B. Thrombomodulin (THBD) gene variants and thrombotic risk in a population-based cohort study. J Thromb Haemost 2022; 20:929-935. [PMID: 34970867 DOI: 10.1111/jth.15630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The protein C anticoagulant system plays a key role in maintaining the hemostatic balance. Although several studies have identified thrombomodulin gene (THBD) variants among venous thromboembolism (VTE) patients, the role of THBD in relation to VTE in humans remains to be clarified. OBJECTIVES This study aimed to determine the thrombotic risk of rare and common THBD variants in a large population-based cohort of middle-aged and older adults. PATIENTS/METHODS The exome sequence of THBD was analyzed for qualifying variants in 28,794 subjects (born 1923-1950, 60% women), who participated in the Malmö Diet and Cancer study (1991-1996). Patients were followed from baseline until the first event of VTE, death, or 2018. Qualifying variants were defined as loss-of-function or non-benign (PolyPhen-2) missense variants with minor allele frequency <0.1%. RESULTS The single common coding variant rs1042579 was not associated with incident VTE. Sixteen rare variants were classified as qualifying and included in collapsing analysis. Seven individuals with VTE compared to 24 individuals without VTE carried one qualifying variant. Cox multivariate regression analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking and alcohol consumption, rs6025, rs1799963, and the top two eigenvectors from a principal components analysis showed a hazard ratio of 3.0 (95% confidence interval 1.4-6.3) for the rare qualifying variants. The distributions of qualifying variants in THBD showed a difference for individuals with and without incident VTE indicating a possible position effect. CONCLUSIONS Rare qualifying THBD variants were associated with VTE, suggesting that rare variants in THBD contribute to development of VTE.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Christer Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Christina Lind-Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Johan Elf
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Peter J Svensson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Bengt Zöller
- Center for Primary Health Care Research, Lund University and Region Skåne, Malmö, Sweden
| |
Collapse
|
11
|
Manderstedt E, Lind-Halldén C, Halldén C, Elf J, Svensson PJ, Dahlbäck B, Engström G, Melander O, Baras A, Lotta LA, Zöller B. Classic Thrombophilias and Thrombotic Risk Among Middle-Aged and Older Adults: A Population-Based Cohort Study. J Am Heart Assoc 2022; 11:e023018. [PMID: 35112923 PMCID: PMC9245807 DOI: 10.1161/jaha.121.023018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Five classic thrombophilias have been recognized: factor V Leiden (rs6025), the prothrombin G20210A variant (rs1799963), and protein C, protein S, and antithrombin deficiencies. This study aimed to determine the thrombotic risk of classic thrombophilias in a cohort of middle‐aged and older adults. Methods and Results Factor V Leiden, prothrombin G20210A and protein‐coding variants in the PROC (protein C), PROS1 (protein S), and SERPINC1 (antithrombin) anticoagulant genes were determined in 29 387 subjects (born 1923–1950, 60% women) who participated in the Malmö Diet and Cancer study (1991–1996). The Human Gene Mutation Database was used to define 68 disease‐causing mutations. Patients were followed up from baseline until the first event of venous thromboembolism (VTE), death, or Dec 31, 2018. Carriership (n=908, 3.1%) for disease‐causing mutations in the PROC, PROS1, and SERPINC1 genes was associated with incident VTE: Hazard ratio (HR) was 1.6 (95% CI, 1.3–1.9). Variants not in Human Gene Mutation Database were not linked to VTE (HR, 1.1; 95% CI, 0.8–1.5). Heterozygosity for rs6025 and rs1799963 was associated with incident VTE: HR, 1.8 (95% CI, 1.6–2.0) and HR, 1.6 (95% CI, 1.3–2.0), respectively. The HR for carrying 1 classical thrombophilia variant was 1.7 (95% CI, 1.6–1.9). HR was 3.9 (95% CI, 3.1–5.0) for carriers of ≥2 thrombophilia variants. Conclusions The 5 classic thrombophilias are associated with a dose‐graded risk of VTE in middle‐aged and older adults. Disease‐causing variants in the PROC, PROS1, and SERPINC1 genes were more common than the rs1799963 variant but the conferred genetic risk was comparable with the rs6025 and rs1799963 variants.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and Bioscience Kristianstad University Kristianstad Sweden
| | - Christina Lind-Halldén
- Department of Environmental Science and Bioscience Kristianstad University Kristianstad Sweden
| | - Christer Halldén
- Department of Environmental Science and Bioscience Kristianstad University Kristianstad Sweden
| | - Johan Elf
- Department of Clinical Sciences Lund UniversitySkåne University Hospital Malmö Sweden
| | - Peter J Svensson
- Department of Clinical Sciences Lund UniversitySkåne University Hospital Malmö Sweden
| | - Björn Dahlbäck
- Department of Translational Medicine Lund UniversitySkåne University Hospital Malmö Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Lund UniversitySkåne University Hospital Malmö Sweden
| | - Olle Melander
- Department of Clinical Sciences Lund UniversitySkåne University Hospital Malmö Sweden
| | | | | | - Bengt Zöller
- Center for Primary Health Care Research Lund University and Region Skåne Malmö Sweden
| | | |
Collapse
|
12
|
Day SE, Traurig M, Kumar P, Piaggi P, Koroglu C, Kobes S, Hanson RL, Bogardus C, Baier LJ. Functional variants in cytochrome b5 type A (CYB5A) are enriched in Southwest American Indian individuals and associate with obesity. Obesity (Silver Spring) 2022; 30:546-552. [PMID: 35043601 PMCID: PMC9304561 DOI: 10.1002/oby.23359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to identify genetic variants enriched in Southwest American Indian (SWAI) individuals that associate with BMI. METHODS Whole genome sequencing data (n = 296) were used to identify potentially functional variants that are common in SWAI individuals (minor allele frequency ≥10%) but rare in other ethnic groups (minor allele frequency < 0.1%). Enriched variants were tested for association with BMI in 5,870 SWAI individuals. One variant was studied using a luciferase reporter, and haplotypes that included this variant were analyzed for association with various measures of obesity (n = 917-5,870), 24-hour energy expenditure (24-h EE; n = 419), and skeletal muscle biopsy expression data (n = 207). RESULTS A 5' untranslated region variant in cytochrome b5 type A (CYB5A), rs548402150, met the enrichment criteria and associated with increased BMI (β = 2%, p = 0.004). Functionally, rs548402150 decreased luciferase expression by 30% (p = 0.003) and correlated with decreased skeletal muscle CYB5A expression (β = -0.5 SD, p = 0.0008). Combining rs548402150 with two splicing quantitative trait loci in CYB5A identified a haplotype carried almost exclusively in SWAI individuals that associated with increased BMI (β = 3%, p = 0.0003) and decreased CYB5A expression, whereas the most common haplotype in all ethnic groups associated with lower BMI and percentage of body fatness, increased 24-h EE, and increased CYB5A expression. CONCLUSIONS Further studies on the effects of CYB5A on 24-h EE and BMI may provide insights into obesity-related physiology.
Collapse
Affiliation(s)
- Samantha E. Day
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Pankaj Kumar
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Cigdem Koroglu
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| |
Collapse
|
13
|
Ziyatdinov A, Kim J, Prokopenko D, Privé F, Laporte F, Loh PR, Kraft P, Aschard H. Estimating the effective sample size in association studies of quantitative traits. G3-GENES GENOMES GENETICS 2021; 11:6178001. [PMID: 33734375 PMCID: PMC8495748 DOI: 10.1093/g3journal/jkab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular interest when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK Biobank is negligible.
Collapse
Affiliation(s)
- Andrey Ziyatdinov
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Florian Privé
- National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark
| | - Fabien Laporte
- Department of Computational Biology-USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Computational Biology-USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
14
|
Hanson RL, Van Hout CV, Hsueh WC, Shuldiner AR, Kobes S, Sinha M, Baier LJ, Knowler WC. Assessment of the potential role of natural selection in type 2 diabetes and related traits across human continental ancestry groups: comparison of phenotypic with genotypic divergence. Diabetologia 2020; 63:2616-2627. [PMID: 32886191 PMCID: PMC7642101 DOI: 10.1007/s00125-020-05272-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Prevalence of type 2 diabetes differs among human ancestry groups, and many hypotheses invoke differential natural selection to account for these differences. We sought to assess the potential role of differential natural selection across major continental ancestry groups for diabetes and related traits, by comparison of genetic and phenotypic differences. METHODS This was a cross-sectional comparison among 734 individuals from an urban sample (none of whom was more closely related to another than third-degree relatives), including 83 African Americans, 523 American Indians and 128 European Americans. Participants were not recruited based on diabetes status or other traits. BMI was calculated, and diabetes was diagnosed by a 75 g oral glucose tolerance test. In those with normal glucose tolerance (n = 434), fasting insulin and 30 min post-load insulin, adjusted for 30 min glucose, were taken as measures of insulin resistance and secretion, respectively. Whole exome sequencing was performed, resulting in 97,388 common (minor allele frequency ≥ 5%) variants; the coancestry coefficient (FST) was calculated across all markers as a measure of genetic divergence among ancestry groups. The phenotypic divergence index (PST) was also calculated from the phenotypic differences and heritability (which was estimated from genetic relatedness calculated empirically across all markers in 761 American Indian participants prior to the exclusion of close relatives). Under evolutionary neutrality, the expectation is PST = FST, while for traits under differential selection PST is expected to be significantly greater than FST. A bootstrap procedure was used to test the hypothesis PST = FST. RESULTS: With adjustment for age and sex, prevalence of type 2 diabetes was 34.0% in American Indians, 12.4% in African Americans and 10.4% in European Americans (p = 2.9 × 10-10 for difference among groups). Mean BMI was 36.3, 33.4 and 33.0 kg/m2, respectively (p = 1.9 × 10-7). Mean fasting insulin was 63.8, 48.4 and 45.2 pmol/l (p = 9.2 × 10-5), while mean 30 min insulin was 559.8, 553.5 and 358.8 pmol/l, respectively (p = 5.7 × 10-8). FST across all markers was 0.130, while PST for liability to diabetes, adjusted for age and sex, was 0.149 (p = 0.35 for difference with FST). PST was 0.094 for BMI (p = 0.54), 0.095 for fasting insulin (p = 0.54) and 0.216 (p = 0.18) for 30 min insulin. For type 2 diabetes and BMI, the maximum divergence between populations was observed between American Indians and European Americans (PST-MAX = 0.22, p = 0.37, and PST-MAX = 0.14, p = 0.61), which suggests that a relatively modest 22% or 14% of the genetic variance, respectively, can potentially be explained by differential selection (assuming the absence of neutral drift). CONCLUSIONS/INTERPRETATION These analyses suggest that while type 2 diabetes and related traits differ significantly among continental ancestry groups, the differences are consistent with neutral expectations based on heritability and genetic distances. While these analyses do not exclude a modest role for natural selection, they do not support the hypothesis that differential natural selection is necessary to explain the phenotypic differences among these ancestry groups. Graphical abstract.
Collapse
Affiliation(s)
- Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
| | | | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | | | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Madhumita Sinha
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | | | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| |
Collapse
|