1
|
Meng L, Fang Z, Jiang L, Zheng Y, Hong S, Deng Y, Xie L. Heterozygous pathogenic STT3A variation leads to dominant congenital glycosylation disorders and functional validation in zebrafish. Orphanet J Rare Dis 2025; 20:46. [PMID: 39891251 PMCID: PMC11786438 DOI: 10.1186/s13023-025-03557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Congenital disorders of glycosylation are a rare group of disorders characterized by impaired glycosylation, wherein STT3A encodes the catalytic subunit of the oligosaccharyltransferase complex, which is crucial for protein N-glycosylation. Previous studies have reported that STT3A-CDG is caused by autosomal recessive inheritance. However, in this study, we propose that STT3A-CDG can be pathogenic through autosomal dominant inheritance. METHODS The variant was identified via trio whole-exome sequencing. We constructed wild-type and variant plasmids, transfected them into HEK293T cells and detected the expression levels of the STT3A protein. We performed CRISPR-Cas9 to establish heterozygous knockdown zebrafish to validate the functional implications of autosomal dominant inheritance of STT3A in pathogenesis. RESULTS The patient presented with developmental delay, distinctive facial features, short stature, and abnormal discharges. The heterozygous pathogenic missense variant (NM_001278503.2: c.499G > T, NP_001265432.1:p. Asp167Tyr) was identified, and the Western blot results revealed a significant decrease in protein levels. Heterozygous knockdown zebrafish exhibit phenotypes similar to those of patients, including craniofacial dysmorphology (increased eye distance, increased Basihyal's length, increased Ceratohyal's angle), skeletal abnormalities (reduced number of mineralized bones), developmental delay (reduced adaptability under light‒dark stimuli suggesting abnormal locomotion, orientation, and social behavior), and electrophysiological abnormalities. CONCLUSION We report a proband with a dominant congenital glycosylation disorder caused by heterozygous pathogenic STT3A variation, which is a new inheritance pattern of STT3A. Our report expands the known phenotype of dominant STT3A-CDGs. Furthermore, we provide in vivo validation through the establishment of a heterozygous knockdown zebrafish model for stt3a and strengthened the compelling evidence for dominant STT3A-related pathogenesis.
Collapse
Affiliation(s)
- Linxue Meng
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yinglan Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Siqi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yu Deng
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Ezell KM, Furuta Y, Oglesbee D, Pivnick EK, Rinker D, Sheehan JH, Tinker RJ, Hamid R, Cogan JD, Rives L, Neumann S, Corner B, Koziura M, Phillips JA, the Undiagnosed Diseases Network. Review and metabolomic profiling of unsolved case reveals newly reported autosomal dominant congenital disorder of glycosylation, type Iw formerly thought to only be an autosomal recessive condition. Mol Genet Metab Rep 2024; 41:101145. [PMID: 39435313 PMCID: PMC11491968 DOI: 10.1016/j.ymgmr.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Autosomal dominant congenital disorder of glycosylation (CDG) type Iw (OMIM# 619714) is caused by a heterozygous mutation in the STT3A gene. Most CDGs have an autosomal recessive (AR) mode of inheritance, but several cases with an autosomal dominant (AD) form of an AR CDG have been recently identified. This report describes a 17-year-old male who was referred to the Undiagnosed Diseases Network (UDN) with a history of macrocephaly, failure to thrive, short stature, epilepsy, autism, attention-deficit/hyperactivity disorder, mild developmental delay, intermittent hypotonia, dysmorphic features, and mildly enlarged aortic root. Trio exome sequencing was negative. His biochemical workup included normal plasma amino acids, ammonia, acylcarnitine profile and urine organic and amino acids. His UDN genome sequencing (GS) identified a previously unreported de novo STT3A variant (c.1631A > G: p.Asn544Ser). This variant removes a glycosylation site and was predicted to be destabilizing by structural biology modeling. The patient was formally diagnosed by the UDN Metabolomics Core as having an abnormal transferrin profile indicative of CDG type Iw through metabolomic profiling. We report here an affected male with phenotypic, molecular, and metabolic findings consistent with CDG type Iw due to a heterozygous STT3A variant. This case highlights the importance of further testing of individuals with the phenotypic and metabolic findings of an AR disorder who are heterozygous for a single disease-causing allele and can be shown to have a new AD form of the disorder that represents clinical heterogeneity.
Collapse
Affiliation(s)
- Kimberly M. Ezell
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yutaka Furuta
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eniko K. Pivnick
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David Rinker
- Department of Biological Sciences, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan H. Sheehan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rory J. Tinker
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynette Rives
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Serena Neumann
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian Corner
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Koziura
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - the Undiagnosed Diseases Network
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Biological Sciences, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Lampson BL, Ramίrez AS, Baro M, He L, Hegde M, Koduri V, Pfaff JL, Hanna RE, Kowal J, Shirole NH, He Y, Doench JG, Contessa JN, Locher KP, Kaelin WG. Positive selection CRISPR screens reveal a druggable pocket in an oligosaccharyltransferase required for inflammatory signaling to NF-κB. Cell 2024; 187:2209-2223.e16. [PMID: 38670073 PMCID: PMC11149550 DOI: 10.1016/j.cell.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ana S Ramίrez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lixia He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Vidyasagar Koduri
- Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jamie L Pfaff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yanfeng He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Elsharkawi I, Wongkittichote P, James Paul Daniel E, Starosta RT, Ueda K, Ng BG, Freeze HH, He M, Shinawi M. DDOST-CDG: Clinical and molecular characterization of a third patient with a milder and a predominantly movement disorder phenotype. J Inherit Metab Dis 2023; 46:92-100. [PMID: 36214423 PMCID: PMC9852036 DOI: 10.1002/jimd.12565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 01/22/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of heterogeneous inherited metabolic disorders affecting posttranslational protein modification. DDOST-CDG, caused by biallelic pathogenic variants in DDOST which encodes dolichyl-diphospho-oligosaccharide-protein glycosyltransferase, a subunit of N-glycosylation oligosaccharyltransferase (OST) complex, is an ultra-rare condition that has been described in two patients only. The main clinical features in the two reported patients include profound developmental delay, failure to thrive, and hypotonia. In addition, both patients had abnormal transferrin glycosylation. Here, we report an 18-year-old male who presented with moderate developmental delay, progressive opsoclonus, myoclonus, ataxia, tremor, and dystonia. Biochemical studies by carbohydrate deficient transferrin analysis showed a type I CDG pattern. Exome sequencing identified compound heterozygous variants in DDOST: a maternally inherited variant, c.1142dupT (p.Leu381Phefs*11), and a paternally inherited variant, c.661 T > C (p.Ser221Pro). Plasma N-glycan profiling showed mildly increased small high mannose glycans including Man0-5 GlcNAc2, a pattern consistent with what was previously reported in DDOST-CDG or defects in other subunits of OST complex. Western blot analysis on patient's fibroblasts revealed decreased expression of DDOST and reduced intracellular N-glycosylation, as evident by the biomarkers ICAM-1 and LAMP2. Our study highlights the clinical variability, expands the clinical and biochemical phenotypes, and describes new genotype, which all are essential for diagnosing and managing patients with DDOST-CDG.
Collapse
Affiliation(s)
- Ibrahim Elsharkawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Rodrigo Tzovenos Starosta
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Keisuke Ueda
- Division of Pediatric Neurology, Department of Neurology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, La Jolla, CA, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, La Jolla, CA, USA
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Akmal MA, Hassan MA, Muhammad S, Khurshid KS, Mohamed A. An analytical study on the identification of N-linked glycosylation sites using machine learning model. PeerJ Comput Sci 2022; 8:e1069. [PMID: 36262138 PMCID: PMC9575850 DOI: 10.7717/peerj-cs.1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
N-linked is the most common type of glycosylation which plays a significant role in identifying various diseases such as type I diabetes and cancer and helps in drug development. Most of the proteins cannot perform their biological and psychological functionalities without undergoing such modification. Therefore, it is essential to identify such sites by computational techniques because of experimental limitations. This study aims to analyze and synthesize the progress to discover N-linked places using machine learning methods. It also explores the performance of currently available tools to predict such sites. Almost seventy research articles published in recognized journals of the N-linked glycosylation field have shortlisted after the rigorous filtering process. The findings of the studies have been reported based on multiple aspects: publication channel, feature set construction method, training algorithm, and performance evaluation. Moreover, a literature survey has developed a taxonomy of N-linked sequence identification. Our study focuses on the performance evaluation criteria, and the importance of N-linked glycosylation motivates us to discover resources that use computational methods instead of the experimental method due to its limitations.
Collapse
Affiliation(s)
- Muhammad Aizaz Akmal
- Department of Computer Science, University of Engineering and Technology, KSK, Lahore, Punjab, Pakistan
| | - Muhammad Awais Hassan
- Department of Computer Science, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Shoaib Muhammad
- Department of Computer Science, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Khaldoon S. Khurshid
- Department of Computer Science, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | | |
Collapse
|
6
|
Proteome and Glycoproteome Analyses Reveal the Protein N-Linked Glycosylation Specificity of STT3A and STT3B. Cells 2022; 11:cells11182775. [PMID: 36139350 PMCID: PMC9496733 DOI: 10.3390/cells11182775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
STT3A and STT3B are the main catalytic subunits of the oligosaccharyltransferase complex (OST-A and OST-B in mammalian cells), which primarily mediate cotranslational and post-translocational N-linked glycosylation, respectively. To determine the specificity of STT3A and STT3B, we performed proteomic and glycoproteomic analyses in the gene knock-out (KO) and wild-type HEK293 cells. In total, 3961 proteins, 4265 unique N-linked intact glycopeptides and 629 glycosites representing 349 glycoproteins were identified from all these cells. Deletion of the STT3A gene had a greater impact on the protein expression than deletion of STT3B, especially on glycoproteins. In addition, total mannosylated N-glycans were reduced and fucosylated N-glycans were increased in STT3A-KO cells, which were caused by the differential expression of glycan-related enzymes. Interestingly, hyperglycosylated proteins were identified in KO cells, and the hyperglycosylation of ENPL was caused by the endoplasmic reticulum (ER) stress due to the STT3A deletion. Furthermore, the increased expression of the ATF6 and PERK indicated that the unfolded protein response also happened in STT3A-KO cells. Overall, the specificity of STT3A and STT3B revealed that defects in the OST subunit not only broadly affect N-linked glycosylation of the protein but also affect protein expression.
Collapse
|
7
|
Mousa J, Veres L, Mohamed A, De Graef D, Morava E. Acetazolamide treatment in late onset CDG type 1 due to biallelic pathogenic DHDDS variants. Mol Genet Metab Rep 2022; 32:100901. [PMID: 36046393 PMCID: PMC9421445 DOI: 10.1016/j.ymgmr.2022.100901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Pathogenic variants in DHDDS have been associated with either autosomal recessive retinitis pigmentosa or DHDDS-CDG. Heterozygous variants in DHDDS have been described in patients with a progressive neurodegenerative disease. Here we report on an individual presenting with a multisystem CDG phenotype who was diagnosed with known homozygous pathogenic DHDDS variants, previously associated with isolated retinitis pigmentosa. An adult Ashkenazi Jewish female developed multiple symptoms of late onset type 1 CDG including seizures, ataxia, protein losing enteropathy, tremor, and titubation in association with elevated mono-oligo/di-oligo transferrin ratio in blood, and classic retinitis pigmentosa. She was diagnosed by whole exome sequencing with the common Ashkenazi Jewish, homozygous p.K42E variants in DHDDS. She was started on Acetazolamide and responded well to the treatment which improved her titubation, tremor, and generalized edema. Reviewing the literature, families with DHDDS variants and multisystem presentation were different from our patient's presentation in terms of clinical manifestations, severity, genetic defect, and mode of inheritance. In previously reported patients with neurologic symptoms including seizures, movement abnormalities, and global development delay, the phenotype was caused by heterozygous pathogenic variants in DHDDS. The infant who was reported with a multisystem phenotype and fatal type 1 CDG had compound heterozygosity for a nonsense and a splice site variant in DHDDS, resulting in DHDDS-CDG. The discovery of the novel phenotype associated with the common p.K42E pathogenic variant in DHDDS expands the spectrum of CDG and further enhances our understanding on the role of DHDDS in glycosylation beyond the retina. We report on the first individual carrying homozygous p.K42E variants in DHDDS associated with protein losing enteropathy, seizures, and ataxia. We observed familial variability in association with p.K42E and progressive ataxia in siblings with in DHDDS-CDG. The novel DHDDS-CDG patient phenotype broadens the current spectrum of CDG. Acetazolamide was successful in treating titubation and recurrent edema in our DHDDS-CDG patient of Ashkenazi Jewish descent.
Collapse
Affiliation(s)
- Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Larissa Veres
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Anab Mohamed
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Corresponding author at: Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Zhao X, Huang Y, Zhou S, Ao J, Cai H, Tanaka K, Ito Y, Ishiwata A, Ding F. Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans. Front Chem 2022; 10:880128. [PMID: 35720985 PMCID: PMC9204336 DOI: 10.3389/fchem.2022.880128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Glycosylation is one of the major forms of protein post-translational modification. N-glycans attached to proteins by covalent bonds play an indispensable role in intercellular interaction and immune function. In human bodies, most of the cell surface glycoproteins and secreted glycopeptides are modified with complex-type N-glycans. Thus, for analytical or medicinal purposes, efficient and universal methods to provide homogeneous complex-type N-glycans have been an urgent need. Despite the extremely complicated structures, tremendous progress in the synthesis of N-glycans has been achieved. On one hand, chemical strategies are shown to be effective to prepare core oligosaccharides of N-glycans by focusing on stereoselective glycosylations such as β-mannosylation and α-sialylation, as well as the methodology of the N-glycan assembly. On the other hand, chemoenzymatic strategies have also become increasingly powerful in recent years. This review attempts to highlight the very recent advancements in chemical and chemoenzymatic strategies for eukaryotic complex-type N-glycans.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| |
Collapse
|