1
|
Zou Z, Li S, Zhang H. Advances in keratoconus animal models: From genetics to biomechanics. Exp Eye Res 2025; 254:110330. [PMID: 40081753 DOI: 10.1016/j.exer.2025.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Keratoconus is a disorder characterized by thinning and protrusion of the cornea into a cone shape, potentially leading to decreased vision and blindness. Understanding the pathogenesis of keratoconus and developing treatment strategies is crucial. Currently, animal models of keratoconus created through gene knockout and collagenase digestion have made significant progress in studying the pathogenesis of the disease. However, these models have limitations, such as unverified long-term effects. Future research should focus on optimizing the construction methods of animal models and enhancing long-term observation and evaluation to more accurately simulate human keratoconus. This paper reviews research progress on animal models of keratoconus, examining models constructed using methods such as gene editing, drug induction, cutting of corneal stroma, and mechanical stimulation.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Szabo C. Role of cystathionine-β-synthase and hydrogen sulfide in down syndrome. Neurotherapeutics 2025:e00584. [PMID: 40187942 DOI: 10.1016/j.neurot.2025.e00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Down syndrome (DS) is a genetic condition where the person affected by it is born with an additional - full or partial - copy of chromosome 21. DS presents with characteristic morphological features and is associated with a wide range of biochemical alterations and maladaptations. Cystathionine-β-synthase (CBS) - one of the key mammalian enzymes responsible for the biogenesis of the gaseous transmitter hydrogen sulfide (H2S) - is located on chromosome 21, and people with DS exhibit a significant upregulation of this enzyme in their brain and other organs. Even though 3-mercaptopyruvate sulfurtransferase - another key mammalian enzyme responsible for the biogenesis of H2S and of reactive polysulfides - is not located on chromosome 21, there is also evidence for the upregulation of this enzyme in DS cells. The hypothesis that excess H2S in DS impairs mitochondrial function and cellular bioenergetics was first proposed in the 1990s and has been substantiated and expanded upon over the past 25 years. DS cells are in a state of metabolic suppression due to H2S-induced, reversible inhibition of mitochondrial Complex IV activity. The impairment of aerobic ATP generation in DS cells is partially compensated by an upregulation of glycolysis. The DS-associated metabolic impairment can be reversed by pharmacological CBS inhibition or CBS silencing. In rodent models of DS, CBS upregulation and H2S overproduction contribute to the development of cognitive dysfunction, alter brain electrical activity, and promote reactive gliosis: pharmacological inhibition or genetic correction of CBS overactivation reverses these alterations. CBS can be considered a preclinically validated drug target for the experimental therapy of DS.
Collapse
Affiliation(s)
- Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
3
|
Hashizume R, Wakita S, Sawada H, Takebayashi SI, Kitabatake Y, Miyagawa Y, Hirokawa YS, Imai H, Kurahashi H. Trisomic rescue via allele-specific multiple chromosome cleavage using CRISPR-Cas9 in trisomy 21 cells. PNAS NEXUS 2025; 4:pgaf022. [PMID: 39967679 PMCID: PMC11832276 DOI: 10.1093/pnasnexus/pgaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Human trisomy 21, responsible for Down syndrome, is the most prevalent genetic cause of cognitive impairment and remains a key focus for prenatal and preimplantation diagnosis. However, research directed toward eliminating supernumerary chromosomes from trisomic cells is limited. The present study demonstrates that allele-specific multiple chromosome cleavage by clustered regularly interspaced palindromic repeats Cas9 can achieve trisomy rescue by eliminating the target chromosome from human trisomy 21 induced pluripotent stem cells and fibroblasts. Unlike previously reported allele-nonspecific strategies, we have developed a comprehensive allele-specific (AS) Cas9 target sequence extraction method that efficiently removes the target chromosome. The temporary knockdown of DNA damage response genes increases the chromosome loss rate, while chromosomal rescue reversibly restores gene signatures and ameliorates cellular phenotypes. Additionally, this strategy proves effective in differentiated, nondividing cells. We anticipate that an AS approach will lay the groundwork for more sophisticated medical interventions targeting trisomy 21.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Sachiko Wakita
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shin-ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshifumi S Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Imai
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
4
|
Stafstrom CE, Shao LR. Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1513. [PMID: 39767942 PMCID: PMC11674231 DOI: 10.3390/children11121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches. Ts65Dn mice have been the most widely used animal model of DS. In this model, there is evidence for both abnormal cerebral excitation and inhibition: infantile spasms-like clinical and electrographic activity can be elicited by the administration of gamma-aminobutyric acid (GABA)-B receptor agonist, gamma-butyrolactone (GBL), and depolarizing GABA-A responses persist beyond the age of their usual switch to hyperpolarized responses. But despite its widespread use, the Ts65Dn model may be suboptimal because of the absence of numerous genes that are triplicated in human DS and the presence of numerous genes that are not triplicated in human DS. Recently, a transchromosomic mouse artificial chromosome 21 (TcMAC21) mouse model has been developed, which carries a copy of human chromosome 21 and therefore has a genetic composition more similar to human DS. As in Ts65Dn mice, exposure of TcMAC21 mice to GBL results in epileptic spasms, and aberrant excitation has also been demonstrated. This review summarizes excitatory and inhibitory dysfunction in models of DS that may play a role in the generation of seizures and infantile spasms, providing a perspective on past studies and a prelude for future ones. Further elucidation will hopefully lead to rational therapeutic options for DS children with infantile spasms.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | | |
Collapse
|
5
|
Uno N, Miyamoto H, Yamazaki K, Egawa M, Kobayashi H, Kazuki K, Osaki M, Suzuki T, Hamamichi S, Oshimura M, Tomizuka K, Kazuki Y. Microcell-mediated chromosome transfer between non-identical human iPSCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102382. [PMID: 39634136 PMCID: PMC11616053 DOI: 10.1016/j.omtn.2024.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Microcell-mediated chromosome transfer (MMCT) is anticipated as a unique strategy to manipulate numbers of chromosomes, including the generation of hyperaneuploidy syndrome models with human induced pluripotent stem cells (hiPSCs). Mouse A9/Chinese hamster ovary (CHO) cell libraries of human monochromosomal hybrids as chromosome donor cells frequently exhibit chromosomal rearrangement in the components. The generation of a new A9/CHO library is time-consuming and laborious. Here, we developed an MMCT method using hiPSCs as chromosome donor and recipient cells, through micronucleation using paclitaxel and reversine. Membrane fusion during the MMCT was mediated through interactions between the ecotropic viral envelope transiently expressed in chromosome donor cells and mCAT-1 in chromosome recipient cells. This approach involved tagging Chr21 and ChrY by CRISPR-Cas9 and transferring human/mouse artificial chromosomes, Chr21, ChrX, and ChrY, wherein there are no previous reports demonstrating a full-length introduction. Thus, a strategy that combing CRISPR-Cas9-mediated chromosome tagging and MMCT from hiPSCs as chromosome donor cells to hiPSCs as recipient cells systematically produced isogenic disease model hiPSCs with hyperaneuploidy. This approach allows the study of rare diseases and promises to provide new insights into early developmental mechanisms by introducing a comprehensive set of influential chromosomes/regions into hiPSCs.
Collapse
Affiliation(s)
- Narumi Uno
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kyotaro Yamazaki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Masaya Egawa
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Kobayashi
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shusei Hamamichi
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
6
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
7
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
8
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|
9
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Glass TJ, Lenell C, Fisher EH, Yang Q, Connor NP. Ultrasonic vocalization phenotypes in the Ts65Dn and Dp(16)1Yey mouse models of Down syndrome. Physiol Behav 2023; 271:114323. [PMID: 37573959 PMCID: PMC10592033 DOI: 10.1016/j.physbeh.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Down syndrome (DS) is a developmental disorder associated with a high incidence of challenges in vocal communication. DS can involve medical co-morbidities and structural social factors that may impact communication outcomes, which can present difficulties for the study of vocal communication challenges. Mouse models of DS may be used to study vocal communication differences associated with this syndrome and allow for greater control and consistency of environmental factors. Prior work has demonstrated differences in ultrasonic vocalization (USV) of the Ts65Dn mouse model of DS at a young adult age, however it is not known how USV characteristics are manifested at mature ages. Given that the aging process and age-related co-morbidities may also impact communication in DS, addressing this gap in knowledge may be of value for efforts to understand communication difficulties in DS across the lifespan. The current study hypothesized that the Ts65Dn and Dp(16)1Yey mouse models of DS would demonstrate differences in multiple measures of USV communication at a mature adult age of 5 months. METHODS Ts65Dn mice (n = 16) and euploid controls (n = 19), as well as Dp(16)1Yey mice (n = 20) and wild-type controls (n = 22), were evaluated at 5 months of age for USV production using a mating paradigm. Video footage of USV sessions were analyzed to quantify social behaviors of male mice during USV testing sessions. USV recordings were analyzed using Deepsqueak software to identify 10 vocalization types, which were quantified for 11 acoustic measures. RESULTS Ts65Dn, but not Dp(16)1Yey, showed significantly lower proportions of USVs classified as Step Up, Short, and Frequency Steps, and significantly higher proportions of USVs classified as Inverted U, than euploid controls. Both Ts65Dn and Dp(16)1Yey groups had significantly greater values for power and tonality for USVs than respective control groups. While Ts65Dn showed lower frequencies than controls, Dp(16)1Yey showed higher frequencies than controls. Finally, Ts65Dn showed reductions in a measure of complexity for some call types. No significant differences between genotype groups were identified in analysis of behaviors during testing sessions. CONCLUSION While both Ts65Dn and Dp(16)1Yey show significant differences in USV measures at 5 months of age, of the two models, Ts65Dn shows a relatively greater numbers of differences. Characterization of communication phenotypes in mouse models of DS may be helpful in laying the foundation for future translational advances in the area of communication difficulties associated with DS.
Collapse
Affiliation(s)
- Tiffany J Glass
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA.
| | - Charles Lenell
- Department of Communication Sciences and Disorders, University of Northern Colorado, Greeley, CO, USA
| | - Erin H Fisher
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA
| | - Qiuyu Yang
- Department of Surgery, Statistical Analysis and Research Programming Core, University of Wisconsin, Madison, WI, USA
| | - Nadine P Connor
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near-complete human chromosome 21. eLife 2023; 12:e86023. [PMID: 37249575 PMCID: PMC10229126 DOI: 10.7554/elife.86023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
- The Lieber Institute for Brain DevelopmentBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlandoUnited States
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori UniversityTottoriJapan
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Zeng P, Ge X, Li Z. Transcriptional Interactions of Single B-Subgenome Chromosome with C-Subgenome in B. oleracea-nigra Additional Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2029. [PMID: 37653946 PMCID: PMC10220956 DOI: 10.3390/plants12102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Serial monosomic alien addition lines (MAALs) provide an ideal system to elucidate the transcriptomic interactions between the alien chromosomes and recipient genome under aneuploidy. Herein, five available Brassica oleracea-nigra MAALs (CCB1, CCB4, CCB5, CCB6, CCB8), their derived B. oleracea plants (non-MAALs), and two parents were analyzed for their gene expressions by using high-throughput technology. Compared to parental B. oleracea, all MAALs showed various numbers of DEGs, but CCB8 gave much higher DEGs; the number of downregulated DEGs was slightly higher than the number of upregulated ones, except for in relation to CCB8. All derived B. oleracea plants also gave certain numbers of DEGs, despite these being much lower than in the respective MAALs. Compared to B. nigra, in all five MAALs more DEGs were downregulated than upregulated. Trans-effects were likely more prevailing than cis-effects, and these DEGs were predominantly associated with material transport by dysregulating the cellular component. Meanwhile, the orthologous genes on alien chromosomes could only play a feeble compensatory role for those gene pairs in C-subgenome, and different levels of the expressed genes had a greater tendency towards downregulation. These results revealed transcriptional aneuploidy response patterns between two genomes and suggested that cis- and trans-mechanisms synergistically regulated alien gene transcriptions after distant hybridization.
Collapse
Affiliation(s)
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Z.L.)
| | | |
Collapse
|
15
|
Hiramuki Y, Abe S, Uno N, Kazuki K, Takata S, Miyamoto H, Takayama H, Morimoto K, Takehara S, Osaki M, Tanihata J, Takeda S, Tomizuka K, Oshimura M, Kazuki Y. Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Sci Rep 2023; 13:4360. [PMID: 36928364 PMCID: PMC10020543 DOI: 10.1038/s41598-023-31481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shuta Takata
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haruka Takayama
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kayoko Morimoto
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shoko Takehara
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Division of Experimental Pathology, Department of Functional Morphology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683‑8503, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
16
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near complete human chromosome 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526183. [PMID: 36778465 PMCID: PMC9915508 DOI: 10.1101/2023.01.30.526183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Lieber Institute for Brain Development, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan,Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Correspondence:
| |
Collapse
|
17
|
Roper RJ, Goodlett CR. A new Down syndrome rat model races forward. Trends Genet 2022; 38:1101-1102. [PMID: 35581033 PMCID: PMC9561036 DOI: 10.1016/j.tig.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
Abstract
Animal models of Down syndrome (DS) provide an essential resource for understanding genetic, cellular, and molecular contributions to traits associated with trisomy 21 (Ts21). Recent genetic enhancements in the development of DS models, including the new TcHSA21rat model (Kazuki et al.), have potential to transform our understanding of and potential therapies for Ts21.
Collapse
Affiliation(s)
- Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; Graduate Program in Addiction Neuroscience, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
18
|
Klein JA, Haydar TF. Neurodevelopment in Down syndrome: Concordance in humans and models. Front Cell Neurosci 2022; 16:941855. [PMID: 35910249 PMCID: PMC9334873 DOI: 10.3389/fncel.2022.941855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Great strides have been made over the past 30 years in understanding the neurodevelopmental changes underlying the intellectual disability (ID) in Down syndrome (DS). Detailed studies of human tissue coupled with findings from rodent and induced pluripotent stem cells (iPSCs) model systems have uncovered the changes in neurogenesis, synaptic connectivity, and myelination that drive the anatomical and physiological changes resulting in the disability. However, there remain significant conflicting data between human studies and the models. To fully understand the development of ID in DS, these inconsistencies need to be reconciled. Here, we review the well documented neurodevelopmental phenotypes found in individuals with DS and examine the degree to which widely used models recapitulate these phenotypes. Resolving these areas of discord will further research on the molecular underpinnings and identify potential treatments to improve the independence and quality of life of people with DS.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Tarik F. Haydar
- Children’s National Hospital, Center for Neuroscience Research, Washington, DC, United States
- Departments of Pediatrics, Physiology and Pharmacology, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|