1
|
Hashemi Karoii D, Abroudi AS, Darvar M, Djamali M, Azizi H, Skutella T. Identification of novel long non-coding RNA involved in Sertoli cell of non-obstructive azoospermia based on microarray and bioinformatics analysis. Genomics 2025; 117:111046. [PMID: 40280502 DOI: 10.1016/j.ygeno.2025.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Non-obstructive azoospermia (NOA) is a severe form of male infertility, yet its underlying molecular mechanisms remain poorly understood. This study aimed to identify key regulatory non-coding RNAs (ncRNAs) and hub genes associated with NOA through an integrative bioinformatics approach. Using microarray analysis, we examined 4956 ncRNAs and identified 29 differentially expressed ncRNAs (14 upregulated, 15 downregulated) in NOA compared to healthy individuals. Co-expression analysis revealed significant interactions between lncRNAs, miRNAs, and mRNAs, predicting 31 target mRNAs within the regulatory network. Further, single-cell transcriptomic analysis identified four pivotal hub genes in NOA Sertoli cells: CLTC, XIAP, and DHFR (upregulated) and STMN1 (downregulated). Functional enrichment analysis highlighted critical pathways, including mitotic spindle organization and phosphatase activity, suggesting their involvement in NOA pathophysiology. Our findings provide novel insights into the molecular mechanisms underlying NOA and propose potential biomarkers for improved diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Darvar
- Department of Cellular and Molecular Biology, Islamic Azad University, Ghaemshahr branch, Ghaemshahr, Iran; Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran.
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Sharifi S, Dursun M, Şahin A, Turan S, Altun A, Özcan Ö, Kalkanlı A, Çefle K, Öztürk Ş, Palanduz Ş, Kadıoğlu A. Genetic insights into non-obstructive azoospermia: Implications for diagnosis and TESE outcomes. J Assist Reprod Genet 2025; 42:1223-1237. [PMID: 39932629 PMCID: PMC12055743 DOI: 10.1007/s10815-025-03409-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is considered one of the most severe forms of male infertility. Despite the limited range of testicular phenotypes, NOA exhibits considerable genetic heterogeneity. The aim of this study was to uncover the etiopathogenesis of NOA and provide insights into the outcomes of testicular sperm extraction (TESE). MATERIAL METHOD To elucidate the potential causes of testicular pathogenesis, a cohort of 61 patients was analyzed. The genetic etiology was assessed using our developed gene panel, based on genes with prior functional studies conducted specifically in the context of testicular characterization. RESULTS Our analytical approach, built upon these findings, enabled us to explore the potential genetic causes of NOA and assess their relevance to TESE outcomes. A potential causal defect was identified in 14 genes across a total of 26 individuals (42%). Of these, three genes-MEIOB, TERB1, and USP26-had been previously described in men, while eight genes-SPO11, RBBP7, STS, RBMXL3, ZCCHC13, HUWE1, ESR1, and ABCD1-had been reported in prior studies. Additionally, three genes-CEP85, NAP1L3, and CENPI-had been previously described only in knockout (KO) phenotype studies, and this study represents the first identification of these genes in men. CONCLUSION Interestingly, the histological findings of meiotic arrest were strongly linked to genes involved in meiosis, reinforcing the clinical diagnosis of patients in this cohort. Additionally, our study underscores the importance of refining diagnostic strategies that focus on genes associated with testicular phenotypes, which could enhance the accuracy of TESE success predictions.
Collapse
Affiliation(s)
- Shahrashoub Sharifi
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey.
| | - Murat Dursun
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey.
| | - Ayla Şahin
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Serdar Turan
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayşe Altun
- Department of Obstetrics and Gynecology, İstanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Özden Özcan
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Arif Kalkanlı
- Department of Urology, Medical Park Gebze Hospital, Gebze, Kocaeli, Turkey
| | - Kıvanç Çefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Öztürk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
3
|
Dong J, Zou Z, Wang W, Chen L, Ma R, Ge X, Jing J, Ma J, Yao B. A novel homozygous frameshift mutation in MCM8 causes primary gonadal dysgenesis in both genders. J Assist Reprod Genet 2025; 42:1197-1204. [PMID: 40064807 PMCID: PMC12055739 DOI: 10.1007/s10815-025-03443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 05/07/2025] Open
Abstract
PURPOSE We aimed to demonstrate the genetic factors of primary gonadal dysgenesis in a consanguineous family characterized by underdeveloped testes and non-obstructive azoospermia (NOA) in a male and primary amenorrhoea and primary ovarian insufficiency (POI) in a female. METHODS DNA was extracted from the male proband with infertility from the consanguineous family for whole-exome sequencing and bioinformatics analysis to screen for potential pathogenic genes and mutations. Sanger sequencing was used for further validation of his family pedigree. The effects of the identified novel mutation were evaluated in the male testes tissue by immunohistochemistry and in HEK293T cells by Western blot. RESULTS A homozygous frameshift mutation c.998delG (p. Gly333Glufs*50) in MCM8 was identified in the two siblings. The testes tissue sections in the male showed a Sertoli cell-only syndrome (SCOS). Functional analysis in vitro suggested that the mutation results in a truncated protein of MCM8 in HEK293T cells, and immunohistochemistry in vivo showed decreased expression of MCM8 protein. CONCLUSION We identified a novel homozygous frameshift mutation of MCM8 in two siblings diagnosed with primary gonadal dysgenesis from a consanguineous family. Functional analysis confirmed the pathogenicity of this mutation. Our study not only further reveals the essential role of MCM8 in human gonadal development, but also expands the mutational spectrum of MCM8 involved in male NOA and female POI and provides a new molecular marker for genetic counseling of infertility.
Collapse
Affiliation(s)
- Jie Dong
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Zhichuan Zou
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenhua Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
4
|
Liu B, Tong K, Gao Y, Chen Y, Wang Y, Wang J, Li J, Sun L. Identification of the novel homozygous whole exon deletion in MEI1 underlying azoospermia and embryonic arrest in one consanguineous family. Reprod Sci 2025:10.1007/s43032-025-01851-5. [PMID: 40164922 DOI: 10.1007/s43032-025-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
This study characterized a male infertile patient suffering from azoospermia and a female infertile patient with embryonic arrest from one consanguineous family. We aimed to elucidate the novel pathogenic mechanism and provide support for the genetic diagnosis of infertility. Mutations were detected by whole-exome sequencing (WES) and confirmed by Sanger sequencing. Effect of the mutations on mRNA level was investigated by sequencing the cDNA amplification product. Functional characterization of the mutations was investigated through transfection in HEK293T cells in vitro, and the subcellular localization and protein levels were evaluated by immunofluorescence and western blot. Preimplantation genetic testing was performed to analyze chromosomal anomalies of the arrested embryos. The novel homozygous whole exon deletion of exon 19 in MEI1 was detected by WES. Amplification and sequencing of the cDNA verified the deletion of whole exon of MEI1. Quantitative expression revealed that the deletion result in almost no detectable expression of MEI1 Exon 19 in patients, and their mother is a heterozygous carrier of this whole exon deletion. Western blotting revealed that the whole exon deletion in MEI1 result in production of truncated MEI1 protein, corresponding to the predicted premature termination at Exon 20 of MEI1. Highly chromosomal anomalies were revealed in arrested embryos with MEI1 mutation. Overall, this study reported the first exon rearrangement of MEI1, thus broadening the mutational pattern and spectrum of MEI1-associated infertility, and also revealed the aneuploidies of embryos with MEI1 mutation as a potential reason for declined developmental potency and embryonic arrest.
Collapse
Affiliation(s)
- Bei Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Keya Tong
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yang Gao
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yi Chen
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yifan Wang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Liwei Sun
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
5
|
Garabed LR, Flannigan R. The changing landscape of nonobstructive azoospermia. Curr Opin Urol 2025; 35:127-134. [PMID: 39604250 DOI: 10.1097/mou.0000000000001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW This article aims to describe new developments in the field of nonobstructive azoospermia biology, diagnostics, biomarkers, and therapeutic strategies. RECENT FINDINGS Recent studies have investigated the molecular underpinnings of cellular dysfunction that is contributing to spermatogenic dysfunction and findings suggest abnormalities across both somatic and germ cells. Biomarkers to predict the chances of sperm retrieval are being explored utilizing cell free (cf) DNA and RNA from various body fluids, in addition to a full range of transcripts and epigenetics within seminal fluid. Various approaches are being explored to optimize sperm identification from surgical specimens including microfluidic and machine learning approaches. Finally, approaches to regenerating sperm production from males with nonobstructive azoospermia are evolving to include various 3-dimensional culture techniques with integration of computational modeling. SUMMARY The landscape of nonobstructive azoospermia biomarkers, molecular underpinnings, technological approaches to more reliably identify sperm and novel regenerative therapeutic strategies are likely to transform the field of male reproduction in years to come.
Collapse
Affiliation(s)
- Laurianne Rita Garabed
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
6
|
Bai HW, Li N, Zhang YX, Luo JQ, Tian RH, Li P, Huang YH, Bai FR, Deng CZ, Zhao FJ, Mo R, Chi N, Zhou YC, Li Z, Yao CC, Zhi EL. Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia. Asian J Androl 2025; 27:268-275. [PMID: 39789727 PMCID: PMC11949460 DOI: 10.4103/aja202495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/08/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Collapse
Affiliation(s)
- Hao-Wei Bai
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Na Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Xiang Zhang
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jia-Qiang Luo
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ru-Hui Tian
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Peng Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Hua Huang
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fu-Rong Bai
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Cun-Zhong Deng
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fu-Jun Zhao
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ren Mo
- Department of Urology, Inner Mongolia People’s Hospital, Inner Mongolia Urological Institute, Hohhot 010017, China
| | - Ning Chi
- Department of Urology, Inner Mongolia People’s Hospital, Inner Mongolia Urological Institute, Hohhot 010017, China
| | - Yu-Chuan Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200000, China
| | - Zheng Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Chen-Cheng Yao
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Er-Lei Zhi
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
7
|
Wang G, Fang K, Shang Y, Zhou X, Shao Q, Li S, Wang P, Chen CD, Zhang L, Wang S. Testis-Specific PDHA2 Is Required for Proper Meiotic Recombination and Chromosome Organisation During Spermatogenesis. Cell Prolif 2025:e70003. [PMID: 39973374 DOI: 10.1111/cpr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Proper segregation of homologous chromosomes during meiosis requires crossovers that are tightly regulated by the chromosome structure. PDHA2 is the testis-specific paralog of PDHA1, a core subunit of pyruvate dehydrogenase. However, its role during spermatogenesis is unclear. We show that PDHA2 knockout results in male infertility in mice, but meiotic DSBs in spermatocytes occur normally and are efficiently repaired. Detailed analysis reveals that mid/late recombination intermediates are moderately reduced, resulting in fewer crossovers and many chromosomes without a crossover. Furthermore, defective chromosome structure is observed, including aberrant histone modifications, defective chromosome ends, precocious release of REC8 from chromosomes and fragmented chromosome axes after pachytene. These defects contribute to the failure of pyruvate conversion to acetyl-CoA, resulting in decreased acetyl-CoA and precursors for metabolites and energy in the absence of PDHA2. These findings reveal the important functions of PDHA2 in ensuring proper crossover formation and in modulating chromosome structure during spermatogenesis.
Collapse
Affiliation(s)
- Guoqiang Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Qiqi Shao
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Si Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Ping Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
| |
Collapse
|
8
|
Xu N, Qin Y, Liu Y, Guan Y, Xin H, Ou J, Wang Y. An integrated transcriptomic analysis unveils the regulatory roles of RNA binding proteins during human spermatogenesis. Front Endocrinol (Lausanne) 2025; 16:1522394. [PMID: 40034235 PMCID: PMC11872710 DOI: 10.3389/fendo.2025.1522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Background RNA-binding proteins (RBPs) have emerged as key regulators in testis development and spermatogenesis, yet a comprehensive understanding of their expression dynamics has been lacking. Methods This study leverages published single-cell RNA sequencing (scRNA-seq) data to elucidate the complex expression patterns of RBP genes during postnatal testis development and spermatogenesis. Additionally, it uses bulk RNA-seq data to explore the regulatory impact of RBPs on alternative splicing (AS) in non-obstructive azoospermia (NOA). Results We have identified cell-specific RNA-binding protein (RBP) genes in various cell types throughout testis development. Notably, distinct RBP gene clusters exhibit significant differential expression, particularly in Sertoli cells as they mature from neonatal to adult stages. Our analysis has revealed temporally-regulated RBP clusters that correlate with the developmental progression of Sertoli cells and the advancement of spermatogenesis. Moreover, we have established links between specific RBPs and the pathogenesis of non-obstructive azoospermia (NOA) through the regulation of alternative splicing (AS) events. Additionally, RPL10, RPL39, and SETX have been identified as potential diagnostic biomarkers for NOA. Conclusion This research provided an in-depth look at RBP expression patterns during human testis development and spermatogenesis. It not only deepens our basic comprehension of male fertility and infertility but also indicates promising directions for the creation of innovative diagnostic and treatment methods for NOA.
Collapse
Affiliation(s)
- Ning Xu
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixian Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yu Liu
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudong Guan
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Xin
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwen Ou
- Anti Aging Center, Clifford Hospital, Guangzhou, Guangdong, China
| | - Yiqiao Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Podgrajsek R, Hodzic A, Maver A, Stimpfel M, Andjelic A, Miljanovic O, Ristanovic M, Novakovic I, Plaseska-Karanfilska D, Noveski P, Ostojic S, Grskovic A, Buretic-Tomljanovic A, Peterlin B. Genetic Testing for Monogenic Forms of Male Infertility Contributes to the Clinical Diagnosis of Men with Severe Idiopathic Male Infertility. World J Mens Health 2025; 43:43.e1. [PMID: 39843174 DOI: 10.5534/wjmh.240149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025] Open
Abstract
PURPOSE In recent years, many genes have been associated with male infertility; however, testing of monogenic forms has not yet been clinically implemented in the diagnosis of severe forms of idiopathic male infertility, as the diagnostic utility has not been established yet. The aim of this study was therefore to answer if the implementation of genetic testing for monogenic forms of male infertility could contribute to the clinical diagnosis of men with severe forms of idiopathic male infertility. MATERIALS AND METHODS Based on the ClinGene curation protocol, we defined a panel of genes with sufficient evidence for the involvement with severe male infertility. We tested the 21-gene panel in a representative multicentric cohort of men with significantly impaired spermatogenesis. We performed whole exome sequencing on 191 infertile men with severe forms of idiopathic male infertility; non-obstructive azoospermia, and severe oligozoospermia (<5 million spermatozoa/mL). The control group consisted of 216 men who fathered a child. DNA was prepared based on the Twist CORE exome protocol and sequenced on the Illumina NovaSeq 6000 platform. Variants were classified using the Association for Clinical Genomic Science (ACGS) Best Practice Guidelines for Variant Classification in Rare Disease 2020. RESULTS We identified potential monogenic disease-causing variants in four infertile men. Pathogenic/likely pathogenic variants in STAG3 (c.2776C>T, p.Arg926*; c.2817delG, p.Leu940fs), MSH4 (c.1392delG, p.Ile465fs; c.2261C>T, p.Ser754Leu), TEX15 (c.6848_6849delGA, p.Arg2283fs; c.6271dupA, p.Arg2091fs), and TEX14 (c.1021C>T, p.Arg341*) genes were found. CONCLUSIONS In the present multicentric cohort study, a monogenic cause in 2.1% of infertile men was identified. These findings confirm the utility of monogenic testing and suggest the clinical use of monogenic testing for men with severe forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Hodzic
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Novo mesto, Novo mesto, Slovenia
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksander Andjelic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Olivera Miljanovic
- Center of Medical Genetics and Immunology, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Momcilo Ristanovic
- Institute of Human Genetics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute of Human Genetics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov" Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov" Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Sasa Ostojic
- Centre for Genetic Education, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antun Grskovic
- Department of Urology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Urology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretic-Tomljanovic
- Centre for Genetic Education, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Al-Zubi M, Al-khawaldeh S, Mallak M, Al-Dghaim M, Zytoon R, Abbas R, Alhabahbeh A, Alfadel M, Abuorouq S, Al-magableh MR, Alkhateeb AN, Alboon MR, Al Demour S, Al-Rawashdah SF. Can We Predict the Outcome of Micro Testicular Sperm Extraction in Non-Obstructive Azoospermia From Preoperative Hormonal Profile, Testicular Volume, and Patients Health Factors: A Retrospective Cross-Sectional Study. Am J Mens Health 2025; 19:15579883251320017. [PMID: 39989281 PMCID: PMC11848872 DOI: 10.1177/15579883251320017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025] Open
Abstract
Infertility is characterized by the inability to conceive even after engaging in regular unprotected sexual intercourse for a period of 12 months or longer. Azoospermia affects around 1% of men. Approximately 60% of men diagnosed with azoospermia will have non-obstructive azoospermia (NOA). The main aim of this study is to investigate the potential relationship between preoperative hormonal profiles, testicular volume, and patient health factors with microdissection testicular sperm extraction (micro-TESE) outcomes in individuals with NOA. A retrospective analysis of 152 patients who underwent a micro-TESE operation for NOA at our center from January 2020 to December 2022 was conducted. Both groups were compared for age, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, testicular volume before the operation, previous TESE, smoking, and medical illnesses. A relationship is considered significant when the p value is less than .05. A total of 152 NOA patients were enrolled in this study. Patients were divided into two groups: first group, in whom sperms were identified during the procedure, representing 72 (47.3%) of patients, and the second group (52.7%) of patients, in whom no sperms were found. Results reveal that free testosterone level, total testosterone level, smoking, and previous TESE operation are significantly related to positive surgical results (p value < .05). Our findings suggest that preoperative total and free testosterone levels, smoking status, and previous micro-TESE operation may significantly affect the outcomes of micro-TESE.
Collapse
Affiliation(s)
- Mohammad Al-Zubi
- Department of Surgery and Anesthesia, Division of Urology, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | | | | | | | | | | | | | - Saleh Abuorouq
- Department of Surgery and Anesthesia, Division of Urology, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammad Radhi Al-magableh
- Department of Clinical Sciences, Family Medicine Division, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | | | - Saddam Al Demour
- Division of Urology, Department of Special Surgery, University of Jordan, Amman, Jordan
| | - Samer Fathi Al-Rawashdah
- Special Surgery Department, Urology Division, Faculty of Medicine, Mutah University, Karak, Jordan
| |
Collapse
|
11
|
Fang Q, Ran L, Bi X, Di J, Liu Y, Xu F, Wang B. A novel homozygous nonsense variant of STX2 underlies non-obstructive azoospermia in a consanguineous Chinese family. J Hum Genet 2024; 69:675-677. [PMID: 39155345 DOI: 10.1038/s10038-024-01288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Male infertility is a widespread population health concern, causing various degrees of adverse fertility outcomes. We determined the genetic cause of an infertile male from a consanguineous family, expanding the mutant spectrum of male infertility. A non-obstructive azoospermia (NOA) patient was recruited, and histological type of human testicular tissue of the patient categorized as maturation arrest. We identified a novel loss-of-function variant of syntaxin 2 (STX2) (c.142C>T:p.Gln48*) by performing Whole-exome sequencing (WES) on the NOA patient from a consanguineous Chinese family. Sanger sequencing confirmed the p.Gln48* variant was maternally and paternally inherited. The variant was predicted to be deleterious and resulted in aberrant changes to structure and function of STX2 by In silico analysis. In summary, we reported for the first time that a nonsense variant occurred in the exon region of STX2 in an infertile male presenting with NOA, which was beneficial for diagnosis and therapies of NOA.
Collapse
Affiliation(s)
- Qi Fang
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Lanxi Ran
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinying Bi
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianyong Di
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Beijing, China.
| |
Collapse
|
12
|
Kaltsas A, Stavros S, Kratiras Z, Zikopoulos A, Machairiotis N, Potiris A, Dimitriadis F, Sofikitis N, Chrisofos M, Zachariou A. Predictors of Successful Testicular Sperm Extraction: A New Era for Men with Non-Obstructive Azoospermia. Biomedicines 2024; 12:2679. [PMID: 39767586 PMCID: PMC11726830 DOI: 10.3390/biomedicines12122679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Non-obstructive azoospermia (NOA) is a severe form of male infertility characterized by the absence of sperm in the ejaculate due to impaired spermatogenesis. Testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection is the primary treatment, but success rates are unpredictable, causing significant emotional and financial burdens. Traditional clinical and hormonal predictors have shown inconsistent reliability. This review aims to evaluate current and emerging non-invasive preoperative predictors of successful sperm retrieval in men with NOA, highlighting promising biomarkers and their potential clinical applications. Methods: A comprehensive literature review was conducted, examining studies on clinical and hormonal factors, imaging techniques, molecular biology biomarkers, and genetic testing related to TESE outcomes in NOA patients. The potential role of artificial intelligence and machine learning in enhancing predictive models was also explored. Results: Traditional predictors such as patient age, body mass index, infertility duration, testicular volume, and serum hormone levels (follicle-stimulating hormone, luteinizing hormone, inhibin B) have limited predictive value for TESE success. Emerging non-invasive biomarkers-including anti-Müllerian hormone levels, inhibin B to anti-Müllerian hormone ratio, specific microRNAs, long non-coding RNAs, circular RNAs, and germ-cell-specific proteins like TEX101-show promise in predicting successful sperm retrieval. Advanced imaging techniques like high-frequency ultrasound and functional magnetic resonance imaging offer potential but require further validation. Integrating molecular biomarkers with artificial intelligence and machine learning algorithms may enhance predictive accuracy. Conclusions: Predicting TESE outcomes in men with NOA remains challenging using conventional clinical and hormonal parameters. Emerging non-invasive biomarkers offer significant potential to improve predictive models but require validation through large-scale studies. Incorporating artificial intelligence and machine learning could further refine predictive accuracy, aiding clinical decision-making and improving patient counseling and treatment strategies in NOA.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Zisis Kratiras
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Truro TR1 3LJ, UK;
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
13
|
Li Q, Yang G, Ren B, Liu X, Tang LQ, Shi Q, Shan G, Wang X. ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3' UTR. Mol Cell 2024; 84:4314-4333.e9. [PMID: 39461343 DOI: 10.1016/j.molcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple cis-elements and trans-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3' and 5' exon-intron boundaries and 3' UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. Zc3h14-/- mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.
Collapse
Affiliation(s)
- Qiqi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China
| | - Gang Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei 230071, China.
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China.
| |
Collapse
|
14
|
Wang T, Leng D, Cai Z, Chen B, Li J, Kui H, Li D, Li Z. Insights into left-right asymmetric development of chicken ovary at the single-cell level. J Genet Genomics 2024; 51:1265-1277. [PMID: 39147128 DOI: 10.1016/j.jgg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Avian ovaries develop asymmetrically apart from prey birds, with only the left ovary growing more towards functional organ. Here, we analyze over 135,000 cells from chick's left and right ovaries at six distinct embryonic developmental stages utilizing single-cell transcriptome sequencing. We delineate gene expression patterns across 15 cell types within these embryo ovaries, revealing side-specific development. The left ovaries exhibit cortex cells, zygotene germ cells, and transcriptional changes unique to the left side. Differential gene expression analysis further identifies specific markers and pathways active in these cell types, highlighting the asymmetry in ovarian development. A fine-scale analysis of the germ cell meiotic transcriptome reveals seven distinct clusters with gene expression patterns specific to various meiotic stages. The study also identifies signaling pathways and intercellular communications, particularly between pre-granulosa and germ cells. Spatial transcriptome analysis shows the asymmetry, demonstrating cortex cells exclusively in the left ovary, modulating neighboring cell types through putative secreted signaling molecules. Overall, this single-cell analysis provides insights into the molecular mechanisms of the asymmetric development of avian ovaries, particularly the significant role of cortex cells in the left ovary.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Zhongkun Cai
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China
| | - Jing Li
- School of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan 650214, China
| | - Hua Kui
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
15
|
Amiri-Yekta A, Sen S, Hazane-Puch F, Tebbakh C, Roux-Buisson N, Cazin C, Thierry-Mieg N, Bouras A, Mohammad Ali SG, Hosseini SH, Goodarzian M, Gourabi H, Ray PF, Kherraf ZE. Whole genome sequencing identifies a homozygous splicing variant in TDRKH segregating with non-obstructive azoospermia in an Iranian family. Clin Genet 2024; 106:625-631. [PMID: 38956960 DOI: 10.1111/cge.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Non-obstructive azoospermia (NOA) resulting from primary spermatogenic failure represents one of the most severe forms of male infertility, largely because therapeutic options are very limited. Beyond their diagnostic value, genetic tests for NOA also hold prognostic potential. Specifically, genetic diagnosis enables the establishment of genotype-testicular phenotype correlations, which, in some cases, provide a negative predictive value for testicular sperm extraction (TESE), thereby preventing unnecessary surgical procedures. In this study, we employed whole-genome sequencing (WGS) to investigate two generations of an Iranian family with NOA and identified a homozygous splicing variant in TDRKH (NM_001083965.2: c.562-2A>T). TDRKH encodes a conserved mitochondrial membrane-anchored factor essential for piRNA biogenesis in germ cells. In Tdrkh knockout mice, de-repression of retrotransposons in germ cells leads to spermatogenic arrest and male infertility. Previously, our team reported TDRKH involvement in human NOA cases through the investigation of a North African cohort. This current study marks the second report of TDRKH's role in NOA and human male infertility, underscoring the significance of the piRNA pathway in spermatogenesis. Furthermore, across both studies, we demonstrated that men carrying TDRKH variants, similar to knockout mice, exhibit complete spermatogenic arrest, correlating with failed testicular sperm retrieval.
Collapse
Affiliation(s)
- Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Sharanya Sen
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Florence Hazane-Puch
- CHU Grenoble Alpes, Medical Unit of Molecular Genetics (Hereditary Diseases and Oncology), Grenoble, France
| | - Célia Tebbakh
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Nathalie Roux-Buisson
- CHU Grenoble Alpes, Medical Unit of Molecular Genetics (Hereditary Diseases and Oncology), Grenoble, France
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Ahmed Bouras
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Sadighi-Gilani Mohammad Ali
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maedeh Goodarzian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| |
Collapse
|
16
|
Pan Y, Chen X, Zhou H, Xu M, Li Y, Wang Q, Xu Z, Ren C, Liu L, Liu X. Identification and validation of SHC1 and FGFR1 as novel immune-related oxidative stress biomarkers of non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1356959. [PMID: 39391879 PMCID: PMC11466301 DOI: 10.3389/fendo.2024.1356959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 10/12/2024] Open
Abstract
Background Non-obstructive azoospermia (NOA) is a major contributor of male infertility. Herein, we used existing datasets to identify novel biomarkers for the diagnosis and prognosis of NOA, which could have great significance in the field of male infertility. Methods NOA datasets were obtained from the Gene Expression Omnibus (GEO) database. CIBERSORT was utilized to analyze the distributions of 22 immune cell populations. Hub genes were identified by applying weighted gene co-expression network analysis (WGCNA), machine learning methods, and protein-protein interaction (PPI) network analysis. The expression of hub genes was verified in external datasets and was assessed by receiver operating characteristic (ROC) curve analysis. Gene set enrichment analysis (GSEA) was applied to explore the important functions and pathways of hub genes. The mRNA-microRNA (miRNA)-transcription factors (TFs) regulatory network and potential drugs were predicted based on hub genes. Single-cell RNA sequencing data from the testes of patients with NOA were applied for analyzing the distribution of hub genes in single-cell clusters. Furthermore, testis tissue samples were obtained from patients with NOA and obstructive azoospermia (OA) who underwent testicular biopsy. RT-PCR and Western blot were used to validate hub gene expression. Results Two immune-related oxidative stress hub genes (SHC1 and FGFR1) were identified. Both hub genes were highly expressed in NOA samples compared to control samples. ROC curve analysis showed a remarkable prediction ability (AUCs > 0.8). GSEA revealed that hub genes were predominantly enriched in toll-like receptor and Wnt signaling pathways. A total of 24 TFs, 82 miRNAs, and 111 potential drugs were predicted based on two hub genes. Single-cell RNA sequencing data in NOA patients indicated that SHC1 and FGFR1 were highly expressed in endothelial cells and Leydig cells, respectively. RT-PCR and Western blot results showed that mRNA and protein levels of both hub genes were significantly upregulated in NOA testis tissue samples, which agree with the findings from analysis of the microarray data. Conclusion It appears that SHC1 and FGFR1 could be significant immune-related oxidative stress biomarkers for detecting and managing patients with NOA. Our findings provide a novel viewpoint for illustrating potential pathogenesis in men suffering from infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Li M, Abbas T, Wang Y, Zhi A, Zhou J, Ma A, Murtaza G, Wu Y, Shah W, Zubair M, Khan MA, Iqbal F, Jiang X, Zhang H, Shi Q. A homozygous nonsense variant in HENMT1 causes male infertility in humans and mice. Andrology 2024. [PMID: 39318356 DOI: 10.1111/andr.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND HENMT1 encodes a small RNA methyltransferase that plays a crucial role in mouse spermatogenesis through the methylation of the 3' end of PIWI-interacting RNAs. OBJECTIVES Our study aims to elucidate the relationship between HENMT1 and male infertility in humans. MATERIALS AND METHODS A consanguineous family, having a single non-obstructive azoospermia patient was recruited for pathogenic variants screening. The research includes genetic analysis and experimental validation using mouse models. The patient was diagnosed with non-obstructive azoospermia. Whole-exome sequencing and subsequent bioinformatic analyses were performed to screen for candidate pathogenic variants. The pathogenicity of the identified variant was assessed and studied in vivo using a mouse model that mimicked the patient's mutation. RESULTS Through whole-exome sequencing, we identified a homozygous nonsense variant (c.555G > A, p.Trp185*) in HENMT1 in the patient. The presence of the mutant HENMT1 mRNA was detected in the patient's blood, and the truncated HENMT1 protein was observed in transfected HEK293T cells. The mutant mice modeling this HENMT1 variant displayed an infertile phenotype similar to that of the patient, characterized by spermiogenesis arrest. Further analysis revealed a significant derepression of retrotransposon LINE1 in the testes of the Henmt1 mutant mice, and increased apoptosis of spermatids. DISCUSSION AND CONCLUSION Our findings provide the evidence of pathogenicity of the identified HENMT1 variant, thus shedding light on the indispensable role of HENMT1 in human spermatogenesis.
Collapse
Affiliation(s)
- Ming Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Yue Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Aoran Zhi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ao Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Yufan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology Gomal University, Dera Ismail Khan, Pakistan
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Riera-Escamilla A, Nagirnaja L. Utility of exome sequencing in primary spermatogenic disorders: From research to diagnostics. Andrology 2024. [PMID: 39300832 DOI: 10.1111/andr.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Primary spermatogenic disorders represent a severe form of male infertility whereby sperm production is impaired due to testicular dysfunction, leading to reduced quality or quantity of spermatozoa. Gene-centered research has certainly demonstrated the importance of the genetic factor in the etiology of both poor sperm morphology or motility and reduced sperm count. In the last decade, next-generation sequencing has expanded the research to whole exome which has transformed our understanding of male infertility genetics, but uncertainty persists in its diagnostic yield, especially in large unrelated populations. OBJECTIVE To evaluate the utility of exome sequencing in detecting genetic factors contributing to various traits of primary spermatogenic disorders, which is a crucial step before interpreting the diagnostic yield of the platform. MATERIALS AND METHODS We manually curated 415 manuscripts and included 19 research studies that predominantly performed whole exome sequencing in cohorts of unrelated cases with primary spermatogenic defects. RESULTS The detection rate, defined as the fraction of cases with an identifiable genetic cause, typically remained below 25% for quantitative defects of spermatozoa, whereas improved rates were observed for traits of abnormal sperm morphology/motility and in populations enriched with consanguineous families. Unlike the quantitative defects, the genetic architecture of the qualitative issues of spermatozoa featured a small number of recurrent genes describing a large fraction of studied cases. These observations were also in line with the lower biological complexity of the pathways affected by the reported genes. DISCUSSION AND CONCLUSIONS This review demonstrates the variability in detection rates of exome sequencing across semen phenotypes, which may have an impact on the expectations of the diagnostic yield in the clinical setting.
Collapse
Affiliation(s)
- Antoni Riera-Escamilla
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
19
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Zhou H, Yin Z, Ni B, Lin J, Luo S, Xie W. Whole exome sequencing analysis of 167 men with primary infertility. BMC Med Genomics 2024; 17:230. [PMID: 39267058 PMCID: PMC11391607 DOI: 10.1186/s12920-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Spermatogenic failure is one of the leading causes of male infertility and its genetic etiology has not yet been fully understood. METHODS The study screened a cohort of patients (n = 167) with primary male infertility in contrast to 210 normally fertile men using whole exome sequencing (WES). The expression analysis of the candidate genes based on public single cell sequencing data was performed using the R language Seurat package. RESULTS No pathogenic copy number variations (CNVs) related to male infertility were identified using the the GATK-gCNV tool. Accordingly, variants of 17 known causative (five X-linked and twelve autosomal) genes, including ACTRT1, ADAD2, AR, BCORL1, CFAP47, CFAP54, DNAH17, DNAH6, DNAH7, DNAH8, DNAH9, FSIP2, MSH4, SLC9C1, TDRD9, TTC21A, and WNK3, were identified in 23 patients. Variants of 12 candidate (seven X-linked and five autosomal) genes were identified, among which CHTF18, DDB1, DNAH12, FANCB, GALNT3, OPHN1, SCML2, UPF3A, and ZMYM3 had altered fertility and semen characteristics in previously described knockout mouse models, whereas MAGEC1,RBMXL3, and ZNF185 were recurrently detected in patients with male factor infertility. The human testis single cell-sequencing database reveals that CHTF18, DDB1 and MAGEC1 are preferentially expressed in spermatogonial stem cells. DNAH12 and GALNT3 are found primarily in spermatocytes and early spermatids. UPF3A is present at a high level throughout spermatogenesis except in elongating spermatids. The testicular expression profiles of these candidate genes underlie their potential roles in spermatogenesis and the pathogenesis of male infertility. CONCLUSION WES is an effective tool in the genetic diagnosis of primary male infertility. Our findings provide useful information on precise treatment, genetic counseling, and birth defect prevention for male factor infertility.
Collapse
Affiliation(s)
- Haiyan Zhou
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Zhaochu Yin
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Bin Ni
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Jiwu Lin
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Shuwei Luo
- Center for Reproductive Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China.
- Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Changsha, Hunan, 410008, China.
| | - Wanqin Xie
- National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China.
- Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
21
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
22
|
Xiao H, Ding YL, Yang P, Chen Q, Huang HL, Chen X, Zhou HL, Tang SX. Association between anti-Müllerian hormone concentrations and sperm retrieval outcomes in patients with idiopathic nonobstructive azoospermia: a systematic review and meta-analysis. Asian J Androl 2024; 26:522-527. [PMID: 38748861 PMCID: PMC11449412 DOI: 10.4103/aja202419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Microdissection testicular sperm extraction (mTESE) is commonly performed to retrieve sperm in the testes for assisted reproductive techniques in patients with idiopathic nonobstructive azoospermia (iNOA). However, the success rate of sperm retrieval varies among individuals. We aim to investigate the association between clinical parameters and sperm retrieval outcomes in patients with iNOA. We searched PubMed, EMBASE, and Web of Science from database inception to August 2, 2023. The main measure was whether sperm retrieval was successful in patients with iNOA who underwent mTESE. Pooled estimates of the sperm retrieval rate and weighted mean differences were calculated using random-effects models. The overall sperm retrieval rate was 36.8% (95% confidence interval [CI]: 27.5%-46.0%, I2 = 95.0%) in nine studies comprising 1892 patients with iNOA. No significant differences were found in age, testicular volume, serum total testosterone concentrations, or inhibin B concentrations between positive and negative sperm retrieval outcomes. Lower anti-Müllerian hormone concentrations in patients with iNOA were associated with a positive outcome of mTESE (weighted mean differences: -2.70; 95% CI: -3.94--1.46, I2 = 79.0%). In conclusion, this study shows a significant relationship between anti-Müllerian hormone and sperm retrieval outcomes in patients with iNOA, while age, testicular volume, total testosterone, and inhibin B show no significant association. These findings have important implications for assessing the potential success of sperm retrieval and selecting appropriate treatment strategies in patients with iNOA.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Andrology and Sexual Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu M, Wang L, Li Y, Zhi E, Shen G, Jiang X, Li D, Zhao X, Ruan T, Jiang C, Wang X, Zhang X, Zheng Y, Wu B, Ou N, Zhao G, Dai S, Zhou R, Yang L, Yang Y, Liu H, Shen Y. HSF5 Deficiency Causes Male Infertility Involving Spermatogenic Arrest at Meiotic Prophase I in Humans and Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402412. [PMID: 38958533 PMCID: PMC11434121 DOI: 10.1002/advs.202402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Erlei Zhi
- UrologyUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200000China
| | - Gan Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiaohui Jiang
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| | - Dingming Li
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xinya Zhao
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Tiechao Ruan
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Chuan Jiang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiang Wang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xueguang Zhang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Ningjing Ou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guicheng Zhao
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Siyu Dai
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ruixi Zhou
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Li Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University HospitalKey Laboratory of ObstetricGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengdu610041China
| | - Hanmin Liu
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ying Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| |
Collapse
|
24
|
Oud MS, de Leeuw N, Smeets DFCM, Ramos L, van der Heijden GW, Timmermans RGJ, van de Vorst M, Hofste T, Kempers MJE, Stokman MF, D'Hauwers KWM, Faas BHW, Westra D. Innovative all-in-one exome sequencing strategy for diagnostic genetic testing in male infertility: Validation and 10-month experience. Andrology 2024. [PMID: 39180390 DOI: 10.1111/andr.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Current guidelines indicate that patients with extreme oligozoospermia or azoospermia should be tested for chromosomal imbalances, azoospermia factor (AZF) deletions and/or CFTR variants. For other sperm abnormalities, no genetic diagnostics are recommended. OBJECTIVES To determine whether exome sequencing (ES) with combined copy number variant (CNV) and single nucleotide variant (SNV) analysis is a reliable first-tier method to replace current methods (validation study), and to evaluate the diagnostic yield after 10 months of implementation (evaluation study). MATERIALS AND METHODS In the validation study, ES was performed on DNA of patients already diagnosed with AZF deletions (n = 17), (non-)mosaic sex chromosomal aneuploidies or structural chromosomal anomalies (n = 37), CFTR variants (n = 26), or variants in known infertility genes (n = 4), and 90 controls. The data were analyzed using our standard diagnostic pipeline, with a bioinformatic filter for 130 male infertility genes. In the evaluation study, results of 292 clinical exomes were included. RESULTS All previously reported variants in the validation cohort, including clinically relevant Y-chromosomal microdeletions, were correctly identified and reliably detected. In the evaluation study, we identified one or more clinically relevant genetic anomalies in 67 of 292 of all cases (22.9%): these included aberrations that could have been detected with current methods in 30 of 67 patients (10.2% of total), (possible) (mono)genetic causes in the male infertility gene panel in 28 of 67 patients (9.6%), and carriership of cystic fibrosis in nine of 67 patients (3.1%). CONCLUSION ES is a reliable first-tier method to detect the most common genetic causes of male infertility and, as additional genetic causes can be detected, in our evaluation cohort the diagnostic yield almost doubled (10.2%-19.8%, excluding CF carriers). A genetic diagnosis provides answers on the cause of infertility and helps the professionals in the counseling for treatment, possible co-morbidities and risk for offspring and/or family members. Karyotyping will still remain necessary for detecting balanced translocations or low-grade chromosomal mosaicism.
Collapse
Affiliation(s)
- Manon S Oud
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Dominique F C M Smeets
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Liliana Ramos
- Department of Obstetrics and Gynaecology, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Raoul G J Timmermans
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marlies J E Kempers
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marijn F Stokman
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Brigitte H W Faas
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
26
|
Wehbe Z, Barbotin AL, Boursier A, Cazin C, Hograindleur JP, Bidart M, Fontaine E, Plouvier P, Puch F, Satre V, Arnoult C, Mustapha SFB, Zouari R, Thierry-Mieg N, Ray PF, Kherraf ZE, Coutton C, Martinez G. Phenotypic continuum and poor intracytoplasmic sperm injection intracytoplasmic sperm injection prognosis in patients harboring HENMT1 variants. Andrology 2024. [PMID: 39120570 DOI: 10.1111/andr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Small RNAs interacting with PIWI (piRNAs) play a crucial role in regulating transposable elements and translation during spermatogenesis and are essential in male germ cell development. Disruptions in the piRNA pathway typically lead to severe spermatogenic defects and thus male infertility. The HENMT1 gene is a key player in piRNAs primary biogenesis and dysfunction of HENMT1 protein in meiotic and haploid germ cells resulted in the loss of piRNA methylation, piRNA instability, and TE de-repression. Henmt1-knockout mice exhibit a severe oligo-astheno-teratozoospermia (OAT) phenotype, whereas patients with HENMT1 variants display more severe azoospermia phenotypes, ranging from meiotic arrest to hypospermatogenesis. Through whole-exome sequencing (WES) of infertile patient cohorts, we identified two new patients with variants in the HENMT1 gene presenting spermatozoa in their ejcaulate, providing us the opportunity to study spermatozoa from these patients. OBJECTIVES Investigate the spermatozoa of two patients harboring an HENMT1 variant to determine whether or not these scarce spermatozoa could be used with assisted reproductive technologies. MATERIALS AND METHODS HENMT1 variants identified by WES were validated through Sanger sequencing. Comprehensive semen analysis was conducted, and sperm cells were subjected to transmission electron microscopy for structural examination, in situ hybridization for aneuploidy assessment, and aniline blue staining for DNA compaction status. Subsequently, we assessed their suitability for in vitro fertilization using intracytoplasmic sperm injection (IVF-ICSI). RESULTS Our investigations revealed a severe OAT phenotype similar to knockout mice, revealing altered sperm concentration, mobility, morphology, aneuploidy and nuclear compaction defects. Multiple IVF-ICSI attempts were also performed, but no live births were achieved. DISCUSSION We confirm the crucial role of HENMT1 in spermatogenesis and highlight a phenotypic continuum associated with HENMT1 variants. Unfortunately, the clinical outcome of these genetic predispositions remains unfavorable, regardless of the patient's phenotype. CONCLUSION The presence of spermatozoa is insufficient to anticipate ICSI pregnancy success in HENMT1 patients.
Collapse
Affiliation(s)
- Zeina Wehbe
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Marie Bidart
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Grenoble, France
| | - Emeline Fontaine
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | - Pauline Plouvier
- CHU Lille, Service d'Assistance Médicale à la Procréation et Préservation de la Fertilité, Lille, France
| | - Florence Puch
- CHU Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | | | - Raoudha Zouari
- Centre d'Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis, Tunisia
| | | | - Pierre F Ray
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
27
|
Stallmeyer B, Bühlmann C, Stakaitis R, Dicke AK, Ghieh F, Meier L, Zoch A, MacKenzie MacLeod D, Steingröver J, Okutman Ö, Fietz D, Pilatz A, Riera-Escamilla A, Xavier MJ, Ruckert C, Di Persio S, Neuhaus N, Gurbuz AS, Şalvarci A, Le May N, McEleny K, Friedrich C, van der Heijden G, Wyrwoll MJ, Kliesch S, Veltman JA, Krausz C, Viville S, Conrad DF, O'Carroll D, Tüttelmann F. Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility. Nat Commun 2024; 15:6637. [PMID: 39122675 PMCID: PMC11316121 DOI: 10.1038/s41467-024-50930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Clara Bühlmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Rytis Stakaitis
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Farah Ghieh
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Luisa Meier
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - David MacKenzie MacLeod
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Johanna Steingröver
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Hôpital Universitaire de Bruxelles, Hôpital Erasme, Service de Gynécologie-Obstétrique, Clinique de Fertilité, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Adrian Pilatz
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University Gießen, Gießen, Germany
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
| | - Miguel J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Ruckert
- Centre of Medical Genetics, Department of Medical Genetics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Ali Sami Gurbuz
- Department of Gynecology and Obstetrics Novafertil IVF Center, Konya, Turkey
| | - Ahmet Şalvarci
- Department of Andrology Novafertil IVF Center, Konya, Turkey
| | - Nicolas Le May
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
| | - Kevin McEleny
- Newcastle Fertility Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Corinna Friedrich
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Godfried van der Heijden
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot J Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany.
| |
Collapse
|
28
|
Okutman Ö, Gürbüz AS, Salvarci A, Büyük U, Ruso H, Gürgan T, Tarabeux J, Leuvrey AS, Nourisson E, Lang C, Muller J, Viville S. Evaluation of an Updated Gene Panel as a Diagnostic Tool for Both Male and Female Infertility. Reprod Sci 2024; 31:2309-2317. [PMID: 38664359 DOI: 10.1007/s43032-024-01553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
In recent years, an increasing number of genes associated with male and female infertility have been identified. The genetics of infertility is no longer limited to the analysis of karyotypes or specific genes, and it is now possible to analyse several dozen infertility genes simultaneously. Here, we present the diagnostic activity over the past two years including 140 patients (63 women and 77 men). Targeted sequencing revealed causative variants in 17 patients, representing an overall diagnostic rate of 12.1%, with prevalence rates in females and males of 11% and 13%, respectively. The gene-disease relationship (GDR) was re-evaluated for genes due to the addition of new patients and/or variants in the actual study. Five genes changed categories: two female genes (MEIOB and TBPL2) moved from limited to moderate; two male genes (SOHLH1 and GALNTL5) moved from no evidence to strong and from limited to moderate; and SEPTIN12, which was unable to classify male infertility, was reclassified as limited. Many infertility genes have yet to be identified. With the increasing integration of genetics in reproductive medicine, the scope of intervention extends to include other family members, in addition to individual patients or couples. Genetic counselling consultations and appropriate staffing will need to be established in fertility centres. Trial registration number: Not applicable.
Collapse
Affiliation(s)
- Özlem Okutman
- Service de Gynécologie-Obstetrique, Clinique de Fertilité, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Erasme, Route de Lennik, 808, 1070, Brussels, Belgium.
| | | | | | - Umut Büyük
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Halil Ruso
- Gürgan Clinic Women's Health and IVF Centre, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Timur Gürgan
- Gürgan Clinic Women's Health and IVF Centre, Ankara, Turkey
- Department of Obstetrics and Gynecology, Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Julien Tarabeux
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Lang
- Laboratoire de Diagnostic Génétique, Unité de Génétique de L'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, INSERM UMR 1112, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée Au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Stephane Viville
- Laboratoire de Diagnostic Génétique, Unité de Génétique de L'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, INSERM UMR 1112, Strasbourg, France
| |
Collapse
|
29
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
30
|
Zhang G, Ye F, Yang Y, Xiong D, Zhi W, Wu Y, Sun Y, Zeng J, Liu W. Identification of a novel mutation in chibby family member 2 in a non-obstructive azoospermic patient. Reprod Biol 2024; 24:100891. [PMID: 38733656 DOI: 10.1016/j.repbio.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Azoospermia constitutes a significant factor in male infertility, defined by the absence of spermatozoa in the ejaculate, afflicting 15% of infertile men. However, a subset of azoospermic cases remains unattributed to known genetic variants. Prior investigations have identified the chibby family member 2 (CBY2) as prominently and specifically expressed in the testes of both humans and mice, implicating its potential involvement in spermatogenesis. In this study, we conducted whole exome sequencing (WES) on an infertile family to uncover novel genetic factors contributing to azoospermia. Our analysis revealed a homozygous c .355 C>A variant of CBY2 in a non-obstructive azoospermic patient. This deleterious variant significantly diminished the protein expression of CBY2 both in vivo and in vitro, leading to a pronounced disruption of spermatogenesis at the early round spermatid stage post-meiosis. This disruption was characterized by a nearly complete loss of elongating and elongated spermatids. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation assays demonstrated the interaction between CBY2 and Piwi-like protein 1 (PIWIL1). Immunofluorescence staining further confirmed the co-localization of CBY2 and PIWIL1 in the testes during the spermatogenic process in both humans and mice. Additionally, diminished PIWIL1 expression was observed in the testicular tissue from the affected patient. Our findings suggest that the homozygous c .355 C>A variant of CBY2 compromises CBY2 function, contributing to defective spermatogenesis at the round spermiogenic stage and implicating its role in the pathogenesis of azoospermia.
Collapse
Affiliation(s)
- Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China; Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Fei Ye
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongsheng Xiong
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Weiwei Zhi
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yang Wu
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yongkang Sun
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiuzhi Zeng
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China.
| |
Collapse
|
31
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
32
|
Guo R, Wu H, Zhu X, Wang G, Hu K, Li K, Geng H, Xu C, Zu C, Gao Y, Tang D, Cao Y, He X. Bi-allelic variants in chromatoid body protein TDRD6 cause spermiogenesis defects and severe oligoasthenoteratozoospermia in humans. J Med Genet 2024; 61:553-565. [PMID: 38341271 DOI: 10.1136/jmg-2023-109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.
Collapse
Affiliation(s)
- Rui Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaoyu Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Kaiqin Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kuokuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Chuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Chenwan Zu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
34
|
Lillepea K, Juchnewitsch AG, Kasak L, Valkna A, Dutta A, Pomm K, Poolamets O, Nagirnaja L, Tamp E, Mahyari E, Vihljajev V, Tjagur S, Papadimitriou S, Riera-Escamilla A, Versbraegen N, Farnetani G, Castillo-Madeen H, Sütt M, Kübarsepp V, Tennisberg S, Korrovits P, Krausz C, Aston KI, Lenaerts T, Conrad DF, Punab M, Laan M. Toward clinical exomes in diagnostics and management of male infertility. Am J Hum Genet 2024; 111:877-895. [PMID: 38614076 PMCID: PMC11080280 DOI: 10.1016/j.ajhg.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.
Collapse
Affiliation(s)
- Kristiina Lillepea
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anna-Grete Juchnewitsch
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Laura Kasak
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anu Valkna
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Avirup Dutta
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristjan Pomm
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olev Poolamets
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Erik Tamp
- Center of Pathology, Diagnostic Clinic, East Tallinn Central Hospital, 10138 Tallinn, Estonia
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - Stanislav Tjagur
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
| | - Antoni Riera-Escamilla
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Ginevra Farnetani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Helen Castillo-Madeen
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Mailis Sütt
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Viljo Kübarsepp
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; Department of Pediatric Surgery, Clinic of Surgery, Tartu University Hospital, 51014 Tartu, Estonia
| | - Sven Tennisberg
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Paul Korrovits
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Margus Punab
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
35
|
Muranishi Y, Kobori Y, Katoh-Fukui Y, Tamaoka S, Hattori A, Osaka A, Okada H, Nakabayashi K, Hata K, Kawai T, Ogata-Kawata H, Iwahata T, Saito K, Kon M, Shinohara N, Fukami M. Systematic molecular analyses for 115 karyotypically normal men with isolated non-obstructive azoospermia. Hum Reprod 2024; 39:1131-1140. [PMID: 38511217 DOI: 10.1093/humrep/deae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yuki Muranishi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshitomo Kobori
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Tamaoka
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akiyoshi Osaka
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hiroshi Okada
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Iwahata
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kazuki Saito
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
36
|
Fontana L, Sirchia SM, Pesenti C, Colpi GM, Miozzo MR. Non-invasive biomarkers for sperm retrieval in non-obstructive patients: a comprehensive review. Front Endocrinol (Lausanne) 2024; 15:1349000. [PMID: 38689732 PMCID: PMC11058837 DOI: 10.3389/fendo.2024.1349000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Recent advancements in reproductive medicine have guided novel strategies for addressing male infertility, particularly in cases of non-obstructive azoospermia (NOA). Two prominent invasive interventions, namely testicular sperm extraction (TESE) and microdissection TESE (micro-TESE), have emerged as key techniques to retrieve gametes for assisted reproduction technologies (ART). Both heterogeneity and complexity of NOA pose a multifaceted challenge to clinicians, as the invasiveness of these procedures and their unpredictable success underscore the need for more precise guidance. Seminal plasma can be aptly regarded as a liquid biopsy of the male reproductive tract, encompassing secretions from the testes, epididymides, seminal vesicles, bulbourethral glands, and prostate. This fluid harbors a variety of cell-free nucleic acids, microvesicles, proteins, and metabolites intricately linked to gonadal activity. However, despite numerous investigations exploring potential biomarkers from seminal fluid, their widespread inclusion into the clinical practice remains limited. This could be partially due to the complex interplay of diverse clinical and genetic factors inherent to NOA that likely contributes to the absence of definitive biomarkers for residual spermatogenesis. It is conceivable that the integration of clinical data with biomarkers could increase the potential in predicting surgical procedure outcomes and their choice in NOA cases. This comprehensive review addresses the challenge of sperm retrieval in NOA through non-invasive biomarkers. Moreover, we delve into promising perspectives, elucidating innovative approaches grounded in multi-omics methodologies, including genomics, transcriptomics and proteomics. These cutting-edge techniques, combined with the clinical and genetics features of patients, could improve the use of biomarkers in personalized medical approaches, patient counseling, and the decision-making continuum. Finally, Artificial intelligence (AI) holds significant potential in the realm of combining biomarkers and clinical data, also in the context of identifying non-invasive biomarkers for sperm retrieval.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics Unit, Aziende Socio Sanitarie Territoriali (ASST) Santi Paolo e Carlo, Milan, Italy
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia M. Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pesenti
- Medical Genetics Unit, Aziende Socio Sanitarie Territoriali (ASST) Santi Paolo e Carlo, Milan, Italy
| | - Giovanni Maria Colpi
- Next Fertility Procrea, International Center for Assisted Reproductive Technology, Lugano, Switzerland
| | - Monica R. Miozzo
- Medical Genetics Unit, Aziende Socio Sanitarie Territoriali (ASST) Santi Paolo e Carlo, Milan, Italy
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Zoch A, Konieczny G, Auchynnikava T, Stallmeyer B, Rotte N, Heep M, Berrens RV, Schito M, Kabayama Y, Schöpp T, Kliesch S, Houston B, Nagirnaja L, O'Bryan MK, Aston KI, Conrad DF, Rappsilber J, Allshire RC, Cook AG, Tüttelmann F, O'Carroll D. C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line. Mol Cell 2024; 84:1021-1035.e11. [PMID: 38359823 PMCID: PMC10960678 DOI: 10.1016/j.molcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Gabriela Konieczny
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Rebecca V Berrens
- Institute for Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford OX37TY, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Brendan Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I Aston
- Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
38
|
Muroňová J, Kherraf ZE, Giordani E, Lambert E, Eckert S, Cazin C, Amiri-Yekta A, Court M, Chevalier G, Martinez G, Neirijnck Y, Kühne F, Wehrli L, Klena N, Hamel V, De Macedo L, Escoffier J, Guichard P, Coutton C, Mustapha SFB, Kharouf M, Bouin AP, Zouari R, Thierry-Mieg N, Nef S, Geimer S, Loeuillet C, Ray PF, Arnoult C. Lack of CCDC146, a ubiquitous centriole and microtubule-associated protein, leads to non-syndromic male infertility in human and mouse. eLife 2024; 12:RP86845. [PMID: 38441556 PMCID: PMC10942651 DOI: 10.7554/elife.86845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Elsa Giordani
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Simon Eckert
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Caroline Cazin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Amir Amiri-Yekta
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Francoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Nikolai Klena
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Lisa De Macedo
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Sciences IIIGenevaSwitzerland
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble AlpesGrenobleFrance
| | | | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Anne-Pacale Bouin
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Nicolas Thierry-Mieg
- Laboratoire TIMC/MAGe, CNRS UMR 5525, Pavillon Taillefer, Faculté de MedecineLa TroncheFrance
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGenevaSwitzerland
| | - Stefan Geimer
- Cell Biology/ Electron Microscopy, University of BayreuthBayreuthGermany
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
- UM GI-DPI, CHU Grenoble AlpesGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209GrenobleFrance
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309GrenobleFrance
- Institute for Advanced Biosciences (IAB), Université Grenoble AlpesGrenobleFrance
| |
Collapse
|
39
|
Cerván-Martín M, González-Muñoz S, Guzmán-Jiménez A, Higueras-Serrano I, Castilla JA, Garrido N, Luján S, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Bossini-Castillo L, Carmona FD. Changes in environmental exposures over decades may influence the genetic architecture of severe spermatogenic failure. Hum Reprod 2024; 39:612-622. [PMID: 38305414 DOI: 10.1093/humrep/deae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
STUDY QUESTION Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service, Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
40
|
Yalcin Z, Liang M, Abdelrazek IM, Friedrich C, Bareke E, Nabil A, Tüttelmann F, Majewski J, Abdalla E, Tan SL, Slim R. A report of two homozygous TERB1 protein-truncating variants in two unrelated women with primary infertility. J Assist Reprod Genet 2024; 41:751-756. [PMID: 38277113 PMCID: PMC10957843 DOI: 10.1007/s10815-024-03031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE To investigate the genetic etiology of patients with female infertility. METHODS Whole Exome Sequencing was performed on genomic DNA extracted from the patient's blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members. RESULTS A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant. CONCLUSIONS Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.
Collapse
Affiliation(s)
- Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ibrahim M Abdelrazek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Seang-Lin Tan
- OriginElle Fertility Clinic, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|
41
|
Kherraf ZE, Barbotin AL, Martinez G, Mazet A, Cazin C, Coutton C, Arnoult C, Thierry-Mieg N, Rives N, Rives-Feraille A, Ray PF. A splice donor variant of GAS8 induces structural disorganization of the axoneme in sperm flagella and leads to nonsyndromic male infertility. Clin Genet 2024; 105:220-225. [PMID: 37950557 DOI: 10.1111/cge.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.
Collapse
Affiliation(s)
- Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Guillaume Martinez
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aurélien Mazet
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | - Caroline Cazin
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | | | - Nathalie Rives
- Team Adrenal and Gonadal Pathophysiology, Inserm, U1239 NorDIC, University Rouen Normandie, Rouen, France
- Reproductive Biology Laboratory-CECOS, Rouen University Hospital, Rouen, France
| | - Aurélie Rives-Feraille
- Team Adrenal and Gonadal Pathophysiology, Inserm, U1239 NorDIC, University Rouen Normandie, Rouen, France
- Reproductive Biology Laboratory-CECOS, Rouen University Hospital, Rouen, France
| | - Pierre F Ray
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| |
Collapse
|
42
|
Hashemi Sheikhshabani S, Ghafouri-Fard S, Hosseini E, Omrani MD. A novel homozygote nonsense variant of MSH4 leads to primary ovarian insufficiency and non-obstructive azoospermia. Mol Biol Rep 2024; 51:68. [PMID: 38175272 DOI: 10.1007/s11033-023-09000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Both non-obstructive azoospermia (NOA) and primary ovarian insufficiency (POI) are pathological conditions characterized by premature and frequently complete gametogenesis failure. Considering that the conserved meiosis I steps are the same between oogenesis and spermatogenesis, inherited defects in meiosis I may result in common causes for both POI and NOA. The present research is a retrospective investigation on an Iranian family with four siblings of both genders who were affected by primary gonadal failure. METHODS Proband, an individual with NOA, was subjected to clinical examination, hormonal assessment, and genetic consultation. After reviewing the medical history of other infertile members of the family, patients with NOA went through genetic investigations including karyotyping and assessment of Y chromosome microdeletions, followed by Whole exome sequencing (WES) on the proband. After analyzing WES data, the candidate variant was validated using Sanger sequencing and traced in the family. RESULTS WES analysis of the proband uncovered a novel homozygote nonsense variant, namely c.118C>T in MSH4. This variant resulted in the occurrence of a premature stop codon in residue 40 of MSH4. Notably, the variant was absent in all public exome databases and in the exome data of 400 fertile Iranian individuals. Additionally, the variant was found to co-segregate with infertility in the family. It was also observed that all affected members had homozygous mutations, while their parents were heterozygous and the fertile sister had no mutant allele, corresponding to autosomal recessive inheritance. In addition, we conducted a review of variants reported so far in MSH4, as well as available clinical features related to these variants. The results show that the testicular sperm retrieval and ovarian stimulation cycles have not been successful yet. CONCLUSION Overall, the results of this study indicate that the identification of pathogenic variants in this gene will be beneficial in selecting proper therapeutic strategies. Also, the findings of this study demonstrate that clinicians should obtain the history of other family members of the opposite sex when diagnosing for POI and/or NOA.
Collapse
Affiliation(s)
- Somayeh Hashemi Sheikhshabani
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Hua R, Chu Q, Guo F, Chen Q, Li M, Zhou X, Zhu Y. DNM3OS Enhances the Apoptosis and Senescence of Spermatogonia Associated with Nonobstructive Azoospermia by Providing miR-214-5p and Decreasing E2F2 Expression. Anal Cell Pathol (Amst) 2023; 2023:1477658. [PMID: 38152068 PMCID: PMC10752680 DOI: 10.1155/2023/1477658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Nonobstructive azoospermia (NOA) is a complex disease characterized by the spermatogenic dysfunction of testicular tissues. The roles played by long noncoding RNAs (lncRNAs) in NOA pathogenesis have not been extensively studied. Methods Microarray assays were performed on samples of testicular biopsy tissue obtained from patients with NOA for the purpose of identifying differentially expressed lncRNAs and messenger RNA (mRNA) transcripts, and the results were verified by quantitative real-time polymerase chain reaction. Mouse-derived GC-1 spermatogonia (spg) cells undergoing treatment with Adriamycin (ADR) were used to investigate the biological functions of the selected lncRNAs in vitro. The target microRNAs (miRNAs) of lncRNAs and the target mRNAs of miRNAs were predicted by a bioinformatics analysis. Functional studies performed using the CCK-8 assay, EdU incorporation assay, apoptosis detection, and senescence-associated β-galactosidase (SA-β-Gal) staining were conducted using GC-1 spg cells. Results Totals of 2,652 lncRNAs and 2,625 mRNAs were found to be differentially expressed in the testicular tissue of NOA patients when compared with patients in a control group. Dynamin 3 opposite strand (DNM3OS) was a provider of pe-miR-214-5p that positively regulates miR-214-5p expression in GC-1 spg cells. The E2 factor (E2F) family of transcription factor 2 (E2F2) was initially predicted and subsequently verified to be a downstream gene of miR-214-5p. E2F2 expression was upregulated after DNM3OS knockdown in ADR-treated GC-1 spg cells. Moreover, knockdown of either DNM3OS or miR-214-5p significantly alleviated ADR-induced decreases in cellular activity and proliferation, as well as increases in apoptosis and senescence of mouse spermatogonial GC-1 spg cells. Conclusions DNM3OS was found to regulate the apoptosis and senescence of spermatogonia by providing miR-214-5p and decreasing E2F2 expression, suggesting it as a novel target for gene therapy of male infertility.
Collapse
Affiliation(s)
- Rui Hua
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjun Chu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinjie Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Maocai Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongtong Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Yao L, Ge Y, Du T, Chen T, Ma J, Song N. A novel splicing mutation in helicase for meiosis 1 leads to non-obstructive azoospermia. J Assist Reprod Genet 2023; 40:2493-2498. [PMID: 37574498 PMCID: PMC10504198 DOI: 10.1007/s10815-023-02907-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE Non-obstructive azoospermia (NOA) is an essential cause of male infertility for which treatment options are limited. The pathogenic mechanism of NOA, especially idiopathic NOA, remains unclear. Gene variations are associated with the occurrence of NOA. Our study was performed to investigate the genetic causes of NOA. METHODS Whole exome sequencing (WES) was performed in two probands diagnosed with NOA from a Chinese family. Sanger sequencing was applied to verify the pathogenic variants. A minigene assay was carried out to identify the effect of the splicing variants. RESULTS We detected a novel homozygous variant (c.2681-3 T > A) in the HFM1 gene in the two siblings diagnosed with NOA, and their parents carried heterozygous mutations in the same gene. The results of the minigene assay revealed this splicing variant results in exon25 of HFM1 being skipped, leading to a protein truncation (p.Trp894Cysfs*44). CONCLUSION Our results showed that a deleterious splicing variant in HFM1 was related to NOA in these two patients. This novel variant of HFM1 may serve as a potential genetic biomarker for NOA patients.
Collapse
Affiliation(s)
- Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yifeng Ge
- Department of Reproductive Medical Center, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Tian Du
- Department of Reproductive Medical Center, Jinling Hospital, Affiliated Hospital of Medical School, Southeast University, Nanjing, 210002, China
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinzhao Ma
- Department of Reproductive Medical Center, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
45
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
46
|
McKinzey DR, Li C, Gao Y, Trakselis MA. Activity, substrate preference and structure of the HsMCM8/9 helicase. Nucleic Acids Res 2023; 51:7330-7341. [PMID: 37309874 PMCID: PMC10415141 DOI: 10.1093/nar/gkad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
The minichromosomal maintenance proteins, MCM8 and MCM9, are more recent evolutionary additions to the MCM family, only cooccurring in selected higher eukaryotes. Mutations in these genes are directly linked to ovarian insufficiency, infertility, and several cancers. MCM8/9 appears to have ancillary roles in fork progression and recombination of broken replication forks. However, the biochemical activity, specificities and structures have not been adequately illustrated, making mechanistic determination difficult. Here, we show that human MCM8/9 (HsMCM8/9) is an ATP dependent DNA helicase that unwinds fork DNA substrates with a 3'-5' polarity. High affinity ssDNA binding occurs in the presence of nucleoside triphosphates, while ATP hydrolysis weakens the interaction with DNA. The cryo-EM structure of the HsMCM8/9 heterohexamer was solved at 4.3 Å revealing a trimer of heterodimer configuration with two types of interfacial AAA+ nucleotide binding sites that become more organized upon binding ADP. Local refinements of the N or C-terminal domains (NTD or CTD) improved the resolution to 3.9 or 4.1 Å, respectively, and shows a large displacement in the CTD. Changes in AAA+ CTD upon nucleotide binding and a large swing between the NTD and CTD likely implies that MCM8/9 utilizes a sequential subunit translocation mechanism for DNA unwinding.
Collapse
Affiliation(s)
- David R McKinzey
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
47
|
Quarantani G, Sorgente A, Alfano M, Pipitone GB, Boeri L, Pozzi E, Belladelli F, Pederzoli F, Ferrara AM, Montorsi F, Moles A, Carrera P, Salonia A, Casari G. Whole exome data prioritization unveils the hidden weight of Mendelian causes of male infertility. A report from the first Italian cohort. PLoS One 2023; 18:e0288336. [PMID: 37540677 PMCID: PMC10403130 DOI: 10.1371/journal.pone.0288336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023] Open
Abstract
Almost 40% of infertile men cases are classified as idiopathic when tested negative to the current diagnostic routine based on the screening of karyotype, Y chromosome microdeletions and CFTR mutations in men with azoospermia or oligozoospermia. Rare monogenic forms of infertility are not routinely evaluated. In this study we aim to investigate the unknown potential genetic causes in couples with pure male idiopathic infertility by applying variant prioritization to whole exome sequencing (WES) in a cohort of 99 idiopathic Italian patients. The ad-hoc manually curated gene library prioritizes genes already known to be associated with more common and rare syndromic and non-syndromic male infertility forms. Twelve monogenic cases (12.1%) were identified in the whole cohort of patients. Of these, three patients had variants related to mild androgen insensitivity syndrome, two in genes related to hypogonadotropic hypogonadism, and six in genes related to spermatogenic failure, while one patient is mutant in PKD1. These results suggest that NGS combined with our manually curated pipeline for variant prioritization and classification can uncover a considerable number of Mendelian causes of infertility even in a small cohort of patients.
Collapse
Affiliation(s)
- Gioia Quarantani
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Sorgente
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Battista Pipitone
- Genomics for Human Disease Diagnosis Unit and Lab of Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, Foundation IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Moles
- CNR Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Paola Carrera
- Genomics for Human Disease Diagnosis Unit and Lab of Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Casari
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
48
|
Flannigan R, Tadayon Najafabadi B, Violette PD, Jarvi K, Patel P, Bach PV, Domes T, Zini A, Grober E, Mak V, Fischer MA, Chan P, Lo K, Chow V, Wu C, Grantmyre J, Patry G. 2023 Canadian Urological Association guideline: Evaluation and management of azoospermia. Can Urol Assoc J 2023; 17:228-240. [PMID: 37581550 PMCID: PMC10426420 DOI: 10.5489/cuaj.8445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | | | - Philippe D. Violette
- Departments of Surgery and Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Keith Jarvi
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Premal Patel
- Division of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Phil Vu Bach
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Trustin Domes
- Division of Urology, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Armand Zini
- Division of Urology, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Ethan Grober
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Victor Mak
- Division of Urology, Department of Surgery, Mackenzie Health, Richmond Hill, ON, Canada
| | - Marc Anthony Fischer
- Departments of Surgery and Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Peter Chan
- Division of Urology, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Kirk Lo
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Victor Chow
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chris Wu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Grantmyre
- Division of Urology, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Genevieve Patry
- Division of Urology, Department of Surgery, Hôtel-Dieu De Lévis, Lévis, QC, Canada
| |
Collapse
|
49
|
Llano E, Pendás AM. Synaptonemal Complex in Human Biology and Disease. Cells 2023; 12:1718. [PMID: 37443752 PMCID: PMC10341275 DOI: 10.3390/cells12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific multiprotein complex that forms between homologous chromosomes during prophase of meiosis I. Upon assembly, the SC mediates the synapses of the homologous chromosomes, leading to the formation of bivalents, and physically supports the formation of programmed double-strand breaks (DSBs) and their subsequent repair and maturation into crossovers (COs), which are essential for genome haploidization. Defects in the assembly of the SC or in the function of the associated meiotic recombination machinery can lead to meiotic arrest and human infertility. The majority of proteins and complexes involved in these processes are exclusively expressed during meiosis or harbor meiosis-specific subunits, although some have dual functions in somatic DNA repair and meiosis. Consistent with their functions, aberrant expression and malfunctioning of these genes have been associated with cancer development. In this review, we focus on the significance of the SC and their meiotic-associated proteins in human fertility, as well as how human genetic variants encoding for these proteins affect the meiotic process and contribute to infertility and cancer development.
Collapse
Affiliation(s)
- Elena Llano
- Departamento Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Alberto M. Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
50
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|