1
|
Wang X, Du Q, Li W, Zou Z, Wang C, Zhou Y, Hu Z, Gu Y, Li F. Functional Investigation of a Novel PIWIL4 Mutation in Nonobstructive Azoospermia During the First Wave of Spermatogenesis. Biomolecules 2025; 15:297. [PMID: 40001600 PMCID: PMC11852923 DOI: 10.3390/biom15020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that are almost exclusively expressed in germ cells to silence harmful transposons to maintain genome stability. PIWIL4 is guided by its associated piRNAs to transposable elements, where it recruits the DNA methylation apparatus and instructs de novo DNA methylation. Herein, we identified a missense variant of PIWIL4 (c.805 C>T p.R269W) in two infertile males. Homozygous male mice carrying the orthologous knock-in variant displayed elevated transposable element expression and aberrant gene expression during the first wave of spermatogenesis, despite exhibiting normal sperm counts and morphology. Mechanistically, the mutated site altered the piRNA-binding ability of PIWIL4 and led to the derepression of endogenous LINE-1 elements. In summary, we identified a piRNA binding mutation in PIWIL4 that may be involved in human nonobstructive azoospermia.
Collapse
Affiliation(s)
- Xiayu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
| | - Qian Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
| | - Wanqian Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
| | - Zhongyu Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
| | - Chikun Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Feng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (Q.D.); (W.L.); (Z.Z.); (C.W.); (Y.Z.); (Z.H.)
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
2
|
Li K, Chen Y, Sheng Y, Tang D, Cao Y, He X. Defects in mRNA splicing and implications for infertility: a comprehensive review and in silico analysis. Hum Reprod Update 2025:dmae037. [PMID: 39953708 DOI: 10.1093/humupd/dmae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND mRNA splicing is a fundamental process in the reproductive system, playing a pivotal role in reproductive development and endocrine function, and ensuring the proper execution of meiosis, mitosis, and gamete function. Trans-acting factors and cis-acting elements are key players in mRNA splicing whose dysfunction can potentially lead to male and female infertility. Although hundreds of trans-acting factors have been implicated in mRNA splicing, the mechanisms by which these factors influence reproductive processes are fully understood for only a subset. Furthermore, the clinical impact of variations in cis-acting elements on human infertility has not been comprehensively characterized, leading to probable omissions of pathogenic variants in standard genetic analyses. OBJECTIVE AND RATIONALE This review aimed to summarize our current understanding of the factors involved in mRNA splicing regulation and their association with infertility disorders. We introduced methods for prioritizing and functionally validating splicing variants associated with human infertility. Additionally, we explored corresponding abnormal splicing therapies that could potentially provide insight into treating human infertility. SEARCH METHODS Systematic literature searches of human and model organisms were performed in the PubMed database between May 1977 and July 2024. To identify mRNA splicing-related genes and pathogenic variants in infertility, the search terms 'splice', 'splicing', 'variant', and 'mutation' were combined with azoospermia, oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella, acephalic spermatozoa, disorders of sex development, early embryonic arrest, reproductive endocrine disorders, oocyte maturation arrest, premature ovarian failure, primary ovarian insufficiency, zona pellucida, fertilization defects, infertile, fertile, infertility, fertility, reproduction, and reproductive. OUTCOMES Our search identified 5014 publications, of which 291 were included in the final analysis. This review provided a comprehensive overview of the biological mechanisms of mRNA splicing, with a focus on the roles of trans-acting factors and cis-acting elements. We highlighted the disruption of 52 trans-acting proteins involved in spliceosome assembly and catalytic activity and recognized splicing regulatory regions and epigenetic regulation associated with infertility. The 73 functionally validated splicing variants in the cis-acting elements of 54 genes have been reported in 20 types of human infertility; 27 of them were located outside the canonical splice sites and potentially overlooked in standard genetic analysis due to likely benign or of uncertain significance. The in silico prediction of splicing can prioritize potential splicing abnormalities that may be true pathogenic mechanisms. We also summarize the methods for prioritizing splicing variants and strategies for functional validation and review splicing therapy approaches for other diseases, providing a reference for abnormal reproduction treatment. WIDER IMPLICATIONS Our comprehensive review of trans-acting factors and cis-acting elements in mRNA splicing will further promote a more thorough understanding of reproductive regulatory processes, leading to improved pathogenic variant identification and potential treatments for human infertility. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kuokuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuge Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuying Sheng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Song Z, Wang Q, Wu J, Li R. Fertility problems in men carrying chromosome 7 inversion: A retrospective, observational study. Medicine (Baltimore) 2025; 104:e41358. [PMID: 39833054 PMCID: PMC11749713 DOI: 10.1097/md.0000000000041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Infertility is a worldwide public health issue. Fifty percent of infertile couples are male-only. A number of male infertility etiologies are significantly influenced by chromosomal abnormalities. Clinical manifestations, however, differ according to the presence of aberrant chromosomes and distinct breakpoints. The reproductive effects of inversion are evident in those who carry it. The influence of inverted carriers on male infertility may be explained by the interchromosomal effect, although further research is still needed to determine the precise mechanism. Furthermore, selecting clinical reproductive technology presents difficulties for both physician and patients. The aim of this study is to determine the clinical characteristics of 4 males who have an inversion of chromosome 7, and to investigate the connection between the breakpoints of this chromosome and male infertility. For each patient, cytogenetic and semen analyses were carried out. Using PubMed or Online Mendelian Inheritance in Man, relevant research and genes on breakpoints on chromosome 7 were found. This study includes 4 male infertile patients, all of whom had chromosome 7 inversions. 46,XY,inv(7)(p22q22), 46,XY,inv(7)(p21q11.2), 46,XY,inv(7)(p21q21), and 46,XY,inv(7)(p15q36) were the results of the cytogenetic analysis. Three cases of aberrant semen parameters were detected by semen detection. After a literature search, 21 cases of chromosome 7 inversion carriers were found. These carrier couples have varying reproductive histories. Among the 5 cases where semen parameters are available, 1 is azoospermia and 1 is oligoasthenozoospermia. Five significant genes on chromosome 7 have been linked to male infertility. Changes in semen parameters may be connected to the breakpoints 7q11, 7q21, 7q22, and 7q36. Physicians should take into account the relevant breakpoints when offering genetic counseling to patients who have chromosome 7 inversion.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Qiuyu Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianchen Wu
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Ranwei Li
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Yi Zhou B, Ting Fu W, Gu H, Zhen Li M, Bin Zhong X, Tang J. A retrospective analysis of 1600 infertility patients with azoospermia and severe oligozoospermia. Clin Chim Acta 2025; 565:119973. [PMID: 39307333 DOI: 10.1016/j.cca.2024.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the genetic etiology of male infertility patients. METHOD A total of 1600 male patients with infertility, including 1300 cases of azoospermia and 300 cases of severe oligozoospermia, underwent routine semen analysis, chromosomal karyotype analysis and sex hormone level testing. The Azoospermia factor (AZF) on the Y chromosome was detected using the multiple fluorescence quantitative PCR technique. Additionally, copy number variation (CNV) analysis was performed on patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF. RESULT Chromosomal abnormalities were found in 334 cases (20.88 %) of the 1600 male infertility patients. The most common type of abnormality was sex chromosome abnormalities (18.94 %), with 47, XXY being the most frequent abnormal karyotype. The rates of chromosomal abnormalities were significantly different between the azoospermia group and the severe oligospermia group (23.69 % and 8.67 %, respectively; P<0.05). AZF microdeletions were detected in 155 cases (9.69 %), with various deletion types and AZFc region microdeletion being the most prevalent. The rates of AZF microdeletions were not significantly different between the azoospermia group and the severe oligospermia group (9.15 % and 12 %, respectively; P=0.133). In 92 patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF, the detection rate of CNV was 16.3 %. Compared to the severe oligospermia group, the azoospermia group had higher levels of FSH and LH and lower levels of T and E2, and the differences were statistically significant (P<0.05). CONCLUSIONS Male infertility is a complex multifactorial disease, with chromosomal abnormalities and Y chromosome microdeletions being important genetic factors leading to the disease. Initial genetic testing of infertile men should include karyotyping and Y chromosome microdeletions. If necessary, CNV testing should be performed to establish a clinical diagnosis and provide individualized treatment for male infertility.
Collapse
Affiliation(s)
- Bing Yi Zhou
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Wen Ting Fu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Ming Zhen Li
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Xiao Bin Zhong
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China; School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Ghasemzadeh Hasankolaei M, Evans NP, Elcombe CS, Lea RG, Sinclair KD, Padmanabhan V, Bellingham M. In-utero exposure to real-life environmental chemicals disrupts gene expression within the hypothalamo-pituitary-gonadal axis of prepubertal and adult rams. ENVIRONMENTAL RESEARCH 2025; 264:120303. [PMID: 39510237 DOI: 10.1016/j.envres.2024.120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Environmental chemicals (ECs) have been associated with a broad range of disorders and diseases. Daily exposure to various ECs in the environment, or real-life exposure, has raised significant public health concerns. Utilizing the biosolids-treated pasture (BTP) sheep model, this study demonstrates that in-utero exposure to a real-life EC mixture disrupts hypothalamo-pituitary-gonadal (HPG) axis gene expression and reproductive traits in prepubertal (8-week-old, 8w) and adult (11-month-old) male sheep. Ewes were maintained on either BTP or pastures fertilized with inorganic fertilizer [control (C)] from approximately one month prior to insemination until around parturition. Thereafter, all animals were kept under control conditions. Effects on reproductive parameters including testosterone concentrations and the expression of key genes in the HPG axis were evaluated in eight-week-old and adult male offspring from both C and biosolids-exposed (B) groups. Results showed that, at 8w, relative to C (n = 11), B males (n = 11) had lower body weight, and altered testicular expression of HSD3B1, LHR and HSD17B3, BMP4, ABP, P27kip and CELF1. Principal component analysis (PCA) identified two 8w B subgroups, based on hypothalamic expression of GnRH, ESR1, and AR, and pituitary expression of KISSR. The two subgroups also exhibited different serum testosterone concentrations. The largest biosolids effects were observed in the hypothalamus of adult rams with NKB, ESR1, KISS1, AR, DLK1 and GNRH1 mRNA expression differing between B (n = 10) and C (n = 11) rams. Testicular steroidogenic enzymes CYP11A1 and HSD3B1 mRNA expression also differed between exposure groups. PCA identified two adult B subgroups, with BS1 (n = 6) displaying hypothalamic effects and BS2 (n = 4) both hypothalamic and testicular effects. The subgroups also differed in circulating testosterone concentrations. These findings demonstrate that exposure to a real-life EC mixture may predispose some males to infertility, by disrupting key functional HPG markers before puberty with consequent downstream effects on steroid hormones and spermatogenesis.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh Hasankolaei
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
6
|
Guo P, Yu Y, Kang H, Liu Y, Zhu D, Sun C, Xing Z, Tang Z, Chen K, Tan A. GASZ is indispensable for gametogenesis in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:626-637. [PMID: 38728119 DOI: 10.1111/imb.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
The prominent role of the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway in animals is to silence transposable elements and maintain genome stability, ensuring proper gametogenesis in gonads. GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) is an evolutionarily conserved protein located on the outer mitochondrial membrane of germ cells and plays vital roles in the piRNA pathway and spermatogenesis in mammals. In the model insect Drosophila melanogaster, GASZ is essential for piRNA biogenesis and oogenesis, whereas its biological functions in non-drosophilid insects are still unknown. Here, we describe a comprehensive investigation of GASZ functions in the silkworm, Bombyx mori, a lepidopteran model insect, by using a binary transgenic CRISPR/Cas9 system. The BmGASZ mutation did not affect growth and development, but led to sterility in both males and females. Eupyrene sperm bundles of mutant males exhibited developmental defects, while the apyrene sperm bundles were normal, which were further confirmed through double copulation experiments with sex-lethal mutants, which males possess functional eupyrene sperm and abnormal apyrene sperm. In female mutant moths, ovarioles were severely degenerated and the eggs in ovarioles were deformed compared with that of wild type (WT). Further RNA-seq and RT-qPCR analysis revealed that amounts of piRNAs and transposon expression were dysregulated in gonads of mutants. In summary, this study has demonstrated vital roles of BmGASZ in gametogenesis through regulating the piRNA pathway in B. mori.
Collapse
Affiliation(s)
- Peilin Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Hongxia Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yutong Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Dalin Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Chenxin Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ziyue Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
7
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
9
|
Wehbe Z, Barbotin AL, Boursier A, Cazin C, Hograindleur JP, Bidart M, Fontaine E, Plouvier P, Puch F, Satre V, Arnoult C, Mustapha SFB, Zouari R, Thierry-Mieg N, Ray PF, Kherraf ZE, Coutton C, Martinez G. Phenotypic continuum and poor intracytoplasmic sperm injection intracytoplasmic sperm injection prognosis in patients harboring HENMT1 variants. Andrology 2024. [PMID: 39120570 DOI: 10.1111/andr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Small RNAs interacting with PIWI (piRNAs) play a crucial role in regulating transposable elements and translation during spermatogenesis and are essential in male germ cell development. Disruptions in the piRNA pathway typically lead to severe spermatogenic defects and thus male infertility. The HENMT1 gene is a key player in piRNAs primary biogenesis and dysfunction of HENMT1 protein in meiotic and haploid germ cells resulted in the loss of piRNA methylation, piRNA instability, and TE de-repression. Henmt1-knockout mice exhibit a severe oligo-astheno-teratozoospermia (OAT) phenotype, whereas patients with HENMT1 variants display more severe azoospermia phenotypes, ranging from meiotic arrest to hypospermatogenesis. Through whole-exome sequencing (WES) of infertile patient cohorts, we identified two new patients with variants in the HENMT1 gene presenting spermatozoa in their ejcaulate, providing us the opportunity to study spermatozoa from these patients. OBJECTIVES Investigate the spermatozoa of two patients harboring an HENMT1 variant to determine whether or not these scarce spermatozoa could be used with assisted reproductive technologies. MATERIALS AND METHODS HENMT1 variants identified by WES were validated through Sanger sequencing. Comprehensive semen analysis was conducted, and sperm cells were subjected to transmission electron microscopy for structural examination, in situ hybridization for aneuploidy assessment, and aniline blue staining for DNA compaction status. Subsequently, we assessed their suitability for in vitro fertilization using intracytoplasmic sperm injection (IVF-ICSI). RESULTS Our investigations revealed a severe OAT phenotype similar to knockout mice, revealing altered sperm concentration, mobility, morphology, aneuploidy and nuclear compaction defects. Multiple IVF-ICSI attempts were also performed, but no live births were achieved. DISCUSSION We confirm the crucial role of HENMT1 in spermatogenesis and highlight a phenotypic continuum associated with HENMT1 variants. Unfortunately, the clinical outcome of these genetic predispositions remains unfavorable, regardless of the patient's phenotype. CONCLUSION The presence of spermatozoa is insufficient to anticipate ICSI pregnancy success in HENMT1 patients.
Collapse
Affiliation(s)
- Zeina Wehbe
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Marie Bidart
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Grenoble, France
| | - Emeline Fontaine
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | - Pauline Plouvier
- CHU Lille, Service d'Assistance Médicale à la Procréation et Préservation de la Fertilité, Lille, France
| | - Florence Puch
- CHU Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | | | - Raoudha Zouari
- Centre d'Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis, Tunisia
| | | | - Pierre F Ray
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
10
|
Stallmeyer B, Bühlmann C, Stakaitis R, Dicke AK, Ghieh F, Meier L, Zoch A, MacKenzie MacLeod D, Steingröver J, Okutman Ö, Fietz D, Pilatz A, Riera-Escamilla A, Xavier MJ, Ruckert C, Di Persio S, Neuhaus N, Gurbuz AS, Şalvarci A, Le May N, McEleny K, Friedrich C, van der Heijden G, Wyrwoll MJ, Kliesch S, Veltman JA, Krausz C, Viville S, Conrad DF, O'Carroll D, Tüttelmann F. Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility. Nat Commun 2024; 15:6637. [PMID: 39122675 PMCID: PMC11316121 DOI: 10.1038/s41467-024-50930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Clara Bühlmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Rytis Stakaitis
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Farah Ghieh
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Luisa Meier
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - David MacKenzie MacLeod
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Johanna Steingröver
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Hôpital Universitaire de Bruxelles, Hôpital Erasme, Service de Gynécologie-Obstétrique, Clinique de Fertilité, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Adrian Pilatz
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University Gießen, Gießen, Germany
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
| | - Miguel J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Ruckert
- Centre of Medical Genetics, Department of Medical Genetics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Ali Sami Gurbuz
- Department of Gynecology and Obstetrics Novafertil IVF Center, Konya, Turkey
| | - Ahmet Şalvarci
- Department of Andrology Novafertil IVF Center, Konya, Turkey
| | - Nicolas Le May
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
| | - Kevin McEleny
- Newcastle Fertility Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Corinna Friedrich
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Godfried van der Heijden
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot J Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Zoch A, Konieczny G, Auchynnikava T, Stallmeyer B, Rotte N, Heep M, Berrens RV, Schito M, Kabayama Y, Schöpp T, Kliesch S, Houston B, Nagirnaja L, O'Bryan MK, Aston KI, Conrad DF, Rappsilber J, Allshire RC, Cook AG, Tüttelmann F, O'Carroll D. C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line. Mol Cell 2024; 84:1021-1035.e11. [PMID: 38359823 PMCID: PMC10960678 DOI: 10.1016/j.molcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Gabriela Konieczny
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Rebecca V Berrens
- Institute for Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford OX37TY, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Brendan Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I Aston
- Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
12
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
13
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
14
|
Joshi M, Sethi S, Mehta P, Kumari A, Rajender S. Small RNAs, spermatogenesis, and male infertility: a decade of retrospect. Reprod Biol Endocrinol 2023; 21:106. [PMID: 37924131 PMCID: PMC10625245 DOI: 10.1186/s12958-023-01155-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), being the top regulators of gene expression, have been thoroughly studied in various biological systems, including the testis. Research over the last decade has generated significant evidence in support of the crucial roles of sncRNAs in male reproduction, particularly in the maintenance of primordial germ cells, meiosis, spermiogenesis, sperm fertility, and early post-fertilization development. The most commonly studied small RNAs in spermatogenesis are microRNAs (miRNAs), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), and transfer RNA-derived small RNAs (ts-RNAs). Small non-coding RNAs are crucial in regulating the dynamic, spatial, and temporal gene expression profiles in developing germ cells. A number of small RNAs, particularly miRNAs and tsRNAs, are loaded on spermatozoa during their epididymal maturation. With regard to their roles in fertility, miRNAs have been studied most often, followed by piRNAs and tsRNAs. Dysregulation of more than 100 miRNAs has been shown to correlate with infertility. piRNA and tsRNA dysregulations in infertility have been studied in only 3-5 studies. Sperm-borne small RNAs hold great potential to act as biomarkers of sperm quality and fertility. In this article, we review the role of small RNAs in spermatogenesis, their association with infertility, and their potential as biomarkers of sperm quality and fertility.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shruti Sethi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anamika Kumari
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|