1
|
Tirelli M, Bonfiglio F, Cantalupo S, Montella A, Avitabile M, Maiorino T, Diskin SJ, Iolascon A, Capasso M. Integrative genomic analyses identify neuroblastoma risk genes involved in neuronal differentiation. Hum Genet 2024; 143:1293-1309. [PMID: 39192051 PMCID: PMC11522082 DOI: 10.1007/s00439-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Genome-Wide Association Studies (GWAS) have been decisive in elucidating the genetic predisposition of neuroblastoma (NB). The majority of genetic variants identified in GWAS are found in non-coding regions, suggesting that they can be causative of pathogenic dysregulations of gene expression. Nonetheless, pinpointing the potential causal genes within implicated genetic loci remains a major challenge. In this study, we integrated NB GWAS and expression Quantitative Trait Loci (eQTL) data from adrenal gland to identify candidate genes impacting NB susceptibility. We found that ZMYM1, CBL, GSKIP and WDR81 expression was dysregulated by NB predisposing variants. We further investigated the functional role of the identified genes through computational analysis of RNA sequencing (RNA-seq) data from single-cell and whole-tissue samples of NB, neural crest, and adrenal gland tissues, as well as through in vitro differentiation assays in NB cell cultures. Our results indicate that dysregulation of ZMYM1, CBL, GSKIP, WDR81 may lead to malignant transformation by affecting early and late stages of normal program of neuronal differentiation. Our findings enhance the understanding of how specific genes contribute to NB pathogenesis by highlighting their influence on neuronal differentiation and emphasizing the impact of genetic risk variants on the regulation of genes involved in critical biological processes.
Collapse
Affiliation(s)
- Matilde Tirelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Annalaura Montella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | | | - Teresa Maiorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 19104, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, USA
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
| |
Collapse
|
2
|
Luo X, Zou Q. Identifying the "stripe" transcription factors and cooperative binding related to DNA methylation. Commun Biol 2024; 7:1265. [PMID: 39367138 PMCID: PMC11452537 DOI: 10.1038/s42003-024-06992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
DNA methylation plays a critical role in gene regulation by modulating the DNA binding of transcription factors (TFs). This study integrates TFs' ChIP-seq profiles with WGBS profiles to investigate how DNA methylation affects protein interactions. Statistical methods and a 5-letter DNA motif calling model have been developed to characterize DNA sequences bound by proteins, while considering the effects of DNA modifications. By employing these methods, 79 significant universal "stripe" TFs and cofactors (USFs), 2360 co-binding protein pairs, and distinct protein modules associated with various DNA methylation states have been identified. The USFs hint a regulatory hierarchy within these protein interactions. Proteins preferentially bind to non-CpG sites in methylated regions, indicating binding affinity is not solely CpG-dependent. Proteins involved in methylation-specific USFs and cobinding pairs play essential roles in promoting and sustaining DNA methylation through interacting with DNMTs or inhibiting TET binding. These findings underscore the interplay between protein binding and methylation, offering insights into epigenetic regulation in cellular biology.
Collapse
Affiliation(s)
- Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
3
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
4
|
Kamaliyan Z, Clarke TL. Zinc finger proteins: guardians of genome stability. Front Cell Dev Biol 2024; 12:1448789. [PMID: 39119040 PMCID: PMC11306022 DOI: 10.3389/fcell.2024.1448789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Zinc finger proteins (ZNF), a unique yet diverse group of proteins, play pivotal roles in fundamental cellular mechanisms including transcription regulation, chromatin remodeling, protein/RNA homeostasis, and DNA repair. Consequently, the mis regulation of ZNF proteins can result in a variety of human diseases, ranging from neurodevelopmental disorders to several cancers. Considering the promising results of DNA damage repair (DDR) inhibition in the clinic, as a therapeutic strategy for patients with homologous recombination (HR) deficiency, identifying other potential targetable DDR proteins as emerged vulnerabilities in resistant tumor cells is essential, especially when considering the burden of acquired drug resistance. Importantly, there are a growing number of studies identifying new ZNFs and revealing their significance in several DDR pathways, highlighting their great potential as new targets for DDR-inhibition therapy. Although, there are still many uncharacterized ZNF-containing proteins with unknown biological function. In this review, we highlight the major classes and observed biological functions of ZNF proteins in mammalian cells. We briefly introduce well-known and newly discovered ZNFs and describe their molecular roles and contributions to human health and disease, especially cancer. Finally, we discuss the significance of ZNFs in DNA repair mechanisms, their potential in cancer therapy and advances in exploiting ZNF proteins as future therapeutic targets for human disease.
Collapse
Affiliation(s)
| | - Thomas L. Clarke
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Jing T, Wei D, Xu X, Wu C, Yuan L, Huang Y, Liu Y, Jiang Y, Wang B. Transposable elements-mediated recruitment of KDM1A epigenetically silences HNF4A expression to promote hepatocellular carcinoma. Nat Commun 2024; 15:5631. [PMID: 38965210 PMCID: PMC11224304 DOI: 10.1038/s41467-024-49926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Transposable elements (TEs) contribute to gene expression regulation by acting as cis-regulatory elements that attract transcription factors and epigenetic regulators. This research aims to explore the functional and clinical implications of transposable element-related molecular events in hepatocellular carcinoma, focusing on the mechanism through which liver-specific accessible TEs (liver-TEs) regulate adjacent gene expression. Our findings reveal that the expression of HNF4A is inversely regulated by proximate liver-TEs, which facilitates liver cancer cell proliferation. Mechanistically, liver-TEs are predominantly occupied by the histone demethylase, KDM1A. KDM1A negatively influences the methylation of histone H3 Lys4 (H3K4) of liver-TEs, resulting in the epigenetic silencing of HNF4A expression. The suppression of HNF4A mediated by KDM1A promotes liver cancer cell proliferation. In conclusion, this study uncovers a liver-TE/KDM1A/HNF4A regulatory axis that promotes liver cancer growth and highlights KDM1A as a promising therapeutic target. Our findings provide insight into the transposable element-related molecular mechanisms underlying liver cancer progression.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yanyi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
6
|
Roberts BS, Anderson AG, Partridge EC, Cooper GM, Myers RM. Probabilistic association of differentially expressed genes with cis-regulatory elements. Genome Res 2024; 34:620-632. [PMID: 38631728 PMCID: PMC11146588 DOI: 10.1101/gr.278598.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Differential gene expression in response to perturbations is mediated at least in part by changes in binding of transcription factors (TFs) and other proteins at specific genomic regions. Association of these cis-regulatory elements (CREs) with their target genes is a challenging task that is essential to address many biological and mechanistic questions. Many current approaches rely on chromatin conformation capture techniques or single-cell correlational methods to establish CRE-to-gene associations. These methods can be effective but have limitations, including resolution, gaps in detectable association distances, and cost. As an alternative, we have developed DegCre, a nonparametric method that evaluates correlations between measurements of perturbation-induced differential gene expression and differential regulatory signal at CREs to score possible CRE-to-gene associations. It has several unique features, including the ability to use any type of CRE activity measurement, yield probabilistic scores for CRE-to-gene pairs, and assess CRE-to-gene pairings across a wide range of sequence distances. We apply DegCre to six data sets, each using different perturbations and containing a variety of regulatory signal measurements, including chromatin openness, histone modifications, and TF occupancy. To test their efficacy, we compare DegCre associations to Hi-C loop calls and CRISPR-validated CRE-to-gene associations, establishing good performance by DegCre that is comparable or superior to competing methods. DegCre is a novel approach to the association of CREs to genes from a perturbation-differential perspective, with strengths that are complementary to existing approaches and allow for new insights into gene regulation.
Collapse
Affiliation(s)
- Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Ashlyn G Anderson
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
7
|
Giovenino C, Trajkova S, Pavinato L, Cardaropoli S, Pullano V, Ferrero E, Sukarova-Angelovska E, Carestiato S, Salmin P, Rinninella A, Battaglia A, Bertoli L, Fadda A, Palermo F, Carli D, Mussa A, Dimartino P, Bruselles A, Froukh T, Mandrile G, Pasini B, De Rubeis S, Buxbaum JD, Pippucci T, Tartaglia M, Rossato M, Delledonne M, Ferrero GB, Brusco A. Skewed X-chromosome inactivation in unsolved neurodevelopmental disease cases can guide re-evaluation For X-linked genes. Eur J Hum Genet 2023; 31:1228-1236. [PMID: 36879111 PMCID: PMC10620389 DOI: 10.1038/s41431-023-01324-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.
Collapse
Affiliation(s)
- Chiara Giovenino
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Verdiana Pullano
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Elena Sukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Pediatric Diseases, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, Republic of North Macedonia
| | - Silvia Carestiato
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Paola Salmin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Antonina Rinninella
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, 94124, Catania, Italy
| | - Anthony Battaglia
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Luca Bertoli
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Antonio Fadda
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Flavia Palermo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Bruselles
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, TO, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marzia Rossato
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Massimo Delledonne
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy.
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy.
| |
Collapse
|
8
|
Moyers BA, Loupe JM, Felker SA, Lawlor JM, Anderson AG, Rodriguez-Nunez I, Bunney WE, Bunney BG, Cartagena PM, Sequeira A, Watson SJ, Akil H, Mendenhall EM, Cooper GM, Myers RM. Allele biased transcription factor binding across human brain regions gives mechanistic insight into eQTLs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561245. [PMID: 37873117 PMCID: PMC10592666 DOI: 10.1101/2023.10.06.561245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcription Factors (TFs) influence gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Because genomic localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF binding sites can disrupt TF-DNA associations and affect gene regulation. To identify variants that impact TF binding in human brain tissues, we quantified allele bias for 93 TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two donors. Using graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signal between alleles at heterozygous variants within each tissue sample from each donor. Comparison of results from different brain regions within donors and the same regions between donors provided measures of allele bias reproducibility. We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at least one TF. We found that alleles that are rarer in the general population were more likely than common alleles to exhibit large biases, and more frequently led to reduced TF binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 3,309 of which were found in neural contexts. Our results provide insights into the effects of both common and rare variation on gene regulation in the brain. These findings can facilitate mechanistic understanding of cis-regulatory variation associated with biological traits, including disease.
Collapse
Affiliation(s)
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville AL, USA
| | | | | | | | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Preston M. Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, USA
| | - Stanley J. Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | | | | | | |
Collapse
|