1
|
Huang QQ, Wigdor EM, Malawsky DS, Campbell P, Samocha KE, Chundru VK, Danecek P, Lindsay S, Marchant T, Koko M, Amanat S, Bonfanti D, Sheridan E, Radford EJ, Barrett JC, Wright CF, Firth HV, Warrier V, Strudwick Young A, Hurles ME, Martin HC. Examining the role of common variants in rare neurodevelopmental conditions. Nature 2024; 636:404-411. [PMID: 39567701 PMCID: PMC11634775 DOI: 10.1038/s41586-024-08217-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Although rare neurodevelopmental conditions have a large Mendelian component1, common genetic variants also contribute to risk2,3. However, little is known about how this polygenic risk is distributed among patients with these conditions and their parents nor its interplay with rare variants. It is also unclear whether polygenic background affects risk directly through alleles transmitted from parents to children, or whether indirect genetic effects mediated through the family environment4 also play a role. Here we addressed these questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 9,128 of their parents and 26,869 controls. Common variants explained around 10% of variance in risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those without, supporting a liability threshold model5. A polygenic score for neurodevelopmental conditions showed only a direct genetic effect. By contrast, polygenic scores for educational attainment and cognitive performance showed no direct genetic effect, but the non-transmitted alleles in the parents were correlated with the child's risk, potentially due to indirect genetic effects and/or parental assortment for these traits4. Indeed, as expected under parental assortment, we show that common variant predisposition for neurodevelopmental conditions is correlated with the rare variant component of risk. These findings indicate that future studies should investigate the possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and consider the contribution of common and rare variants simultaneously when studying cognition-related phenotypes.
Collapse
Affiliation(s)
| | | | | | - Patrick Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - V Kartik Chundru
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | | | | | | | | | | | | | - Eamonn Sheridan
- Wellcome Sanger Institute, Hinxton, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Elizabeth J Radford
- Wellcome Sanger Institute, Hinxton, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Varun Warrier
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Alexander Strudwick Young
- University of California Los Angeles Anderson School of Management, Los Angeles, CA, USA
- Human Genetics Department, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | |
Collapse
|
3
|
Jensen M, Smolen C, Tyryshkina A, Pizzo L, Banerjee D, Oetjens M, Shimelis H, Taylor CM, Pounraja VK, Song H, Rohan L, Huber E, El Khattabi L, van de Laar I, Tadros R, Bezzina C, van Slegtenhorst M, Kammeraad J, Prontera P, Caberg JH, Fraser H, Banka S, Van Dijck A, Schwartz C, Voorhoeve E, Callier P, Mosca-Boidron AL, Marle N, Lefebvre M, Pope K, Snell P, Boys A, Lockhart PJ, Ashfaq M, McCready E, Nowacyzk M, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Bruccheri MG, Mandarà GML, Mari F, Privitera F, Longo I, Curró A, Renieri A, Keren B, Charles P, Cuinat S, Nizon M, Pichon O, Bénéteau C, Stoeva R, Martin-Coignard D, Blesson S, Le Caignec C, Mercier S, Vincent M, Martin C, Mannik K, Reymond A, Faivre L, Sistermans E, Kooy RF, Amor DJ, Romano C, Andrieux J, Girirajan S. Genetic modifiers and ascertainment drive variable expressivity of complex disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312158. [PMID: 39252907 PMCID: PMC11383473 DOI: 10.1101/2024.08.27.24312158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Cora M. Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Hyebin Song
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafik Tadros
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Connie Bezzina
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke Kammeraad
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Harry Fraser
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddhartha Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals, NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, UK
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Callier
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Nathalie Marle
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amber Boys
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Nowacyzk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Teresa Mattina
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Francesca Mari
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Longo
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Curró
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Renieri
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | | | | | | | | | - Radka Stoeva
- CHU Nantes, Medical Genetics Department, Nantes, France
| | | | - Sophia Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Sandra Mercier
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Marie Vincent
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Christa Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Katrin Mannik
- Institute of Genomics, University of Tartu, Estonia
- Health2030 Genome Center, Fondation Campus Biotech, Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Zhang J, Weissenkampen JD, Kember RL, Grove J, Børglum AD, Robinson EB, Brodkin ES, Almasy L, Bucan M, Sebro R. Phenotypic and ancestry-related assortative mating in autism. Mol Autism 2024; 15:27. [PMID: 38877467 PMCID: PMC11177537 DOI: 10.1186/s13229-024-00605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Positive assortative mating (AM) in several neuropsychiatric traits, including autism, has been noted. However, it is unknown whether the pattern of AM is different in phenotypically defined autism subgroups [e.g., autism with and without intellectually disability (ID)]. It is also unclear what proportion of the phenotypic AM can be explained by the genetic similarity between parents of children with an autism diagnosis, and the consequences of AM on the genetic structure of the population. METHODS To address these questions, we analyzed two family-based autism collections: the Simons Foundation Powering Autism Research for Knowledge (SPARK) (1575 families) and the Simons Simplex Collection (SSC) (2283 families). RESULTS We found a similar degree of phenotypic and ancestry-related AM in parents of children with an autism diagnosis regardless of the presence of ID. We did not find evidence of AM for autism based on autism polygenic scores (PGS) (at a threshold of |r|> 0.1). The adjustment of ancestry-related AM or autism PGS accounted for only 0.3-4% of the fractional change in the estimate of the phenotypic AM. The ancestry-related AM introduced higher long-range linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) on different chromosomes that are highly ancestry-informative compared to SNPs that are less ancestry-informative (D2 on the order of 1 × 10-5). LIMITATIONS We only analyzed participants of European ancestry, limiting the generalizability of our results to individuals of non-European ancestry. SPARK and SSC were both multicenter studies. Therefore, there could be ancestry-related AM in SPARK and SSC due to geographic stratification. The study participants from each site were unknown, so we were unable to evaluate for geographic stratification. CONCLUSIONS This study showed similar patterns of AM in autism with and without ID, and demonstrated that the common genetic influences of autism are likely relevant to both autism groups. The adjustment of ancestry-related AM and autism PGS accounted for < 5% of the fractional change in the estimate of the phenotypic AM. Future studies are needed to evaluate if the small increase of long-range LD induced by ancestry-related AM has impact on the downstream analysis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Grove
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Elise B Robinson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Edward S Brodkin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maja Bucan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie Sebro
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Bozkurt-Yozgatli T, Pehlivan D, Gibbs RA, Sezerman U, Posey JE, Lupski JR, Coban-Akdemir Z. Multilocus pathogenic variants contribute to intrafamilial clinical heterogeneity: a retrospective study of sibling pairs with neurodevelopmental disorders. BMC Med Genomics 2024; 17:85. [PMID: 38622594 PMCID: PMC11020671 DOI: 10.1186/s12920-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Multilocus pathogenic variants (MPVs) are genetic changes that affect multiple gene loci or regions of the genome, collectively leading to multiple molecular diagnoses. MPVs may also contribute to intrafamilial phenotypic variability between affected individuals within a nuclear family. In this study, we aim to gain further insights into the influence of MPVs on a disease manifestation in individual research subjects and explore the complexities of the human genome within a familial context. METHODS We conducted a systematic reanalysis of exome sequencing data and runs of homozygosity (ROH) regions of 47 sibling pairs previously diagnosed with various neurodevelopmental disorders (NDD). RESULTS We found siblings with MPVs driven by long ROH regions in 8.5% of families (4/47). The patients with MPVs exhibited significantly higher FROH values (p-value = 1.4e-2) and larger total ROH length (p-value = 1.8e-2). Long ROH regions mainly contribute to this pattern; the siblings with MPVs have a larger total size of long ROH regions than their siblings in all families (p-value = 6.9e-3). Whereas the short ROH regions in the siblings with MPVs are lower in total size compared to their sibling pairs with single locus pathogenic variants (p-value = 0.029), and there are no statistically significant differences in medium ROH regions between sibling pairs (p-value = 0.52). CONCLUSION This study sheds light on the significance of considering MPVs in families with affected sibling pairs and the role of ROH as an adjuvant tool in explaining clinical variability within families. Identifying individuals carrying MPVs may have implications for disease management, identification of possible disease risks to different family members, genetic counseling and exploring personalized treatment approaches.
Collapse
Affiliation(s)
- Tugce Bozkurt-Yozgatli
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Zeynep Coban-Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|