1
|
Urmi UL, Vijay AK, Willcox MDP, Attard S, Enninful G, Kumar N, Islam S, Kuppusamy R. Exploring the Efficacy of Peptides and Mimics against Influenza A Virus, Adenovirus, and Murine Norovirus. Int J Mol Sci 2024; 25:7030. [PMID: 39000138 PMCID: PMC11240954 DOI: 10.3390/ijms25137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samuel Attard
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - George Enninful
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- The Drug Discovery Initiative, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wee LE, Conceicao EP, Sim JXY, Aung MK, Venkatachalam I. Impact of infection prevention precautions on adenoviral infections during the coronavirus disease 2019 (COVID-19) pandemic: Experience of a tertiary-care hospital in Singapore. Infect Control Hosp Epidemiol 2022; 43:269-270. [PMID: 33298224 PMCID: PMC8770837 DOI: 10.1017/ice.2020.1365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Liang En Wee
- SingHealth Infectious Diseases Residency, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Edwin Philip Conceicao
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Jean Xiang Ying Sim
- Department of Infectious Diseases, Singapore General Hospital, Singapore
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Indumathi Venkatachalam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| |
Collapse
|