1
|
Whapham CA, Walker JT. Too much ado about data: continuous remote monitoring of water temperatures, circulation and throughput can assist in the reduction of hospital-associated waterborne infections. J Hosp Infect 2024; 152:47-55. [PMID: 38960042 DOI: 10.1016/j.jhin.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND National and international guidance provides advice on maintenance and management of water systems in healthcare buildings; however, healthcare-associated waterborne infections (HAWIs) are increasing. AIM To identify parameters critical to water quality in healthcare buildings and to assess whether remote sensor monitoring can deliver safe water systems, thus reducing HAWIs. METHODS A narrative review was performed using the following search terms: (1) consistent water temperature AND waterborne pathogen control OR nosocomial infection; (2) water throughput AND waterborne pathogen control OR nosocomial infection; (3) remote monitoring of in-premises water systems AND continuous surveillance for temperature OR throughput OR flow OR use. Databases employed were PubMed, CDSR (Clinical Study Data Request) and DARE (Database of Abstracts of Reviews of Effects) from January 2013 to March 2024. FINDINGS Single ensuite-patient rooms, expansion of handwash basins, widespread glove use, alcohol gel and wipes have increased water system stagnancy resulting in amplification of waterborne pathogens and transmission risk of legionella, pseudomonas, and non-tuberculous mycobacteria. Manual monitoring does not represent temperatures across large complex water systems. This review deems that multiple-point continuous remote sensor monitoring is effective at identifying redundant and low use outlets, hydraulic imbalance and inconsistent temperature delivery across in-premises water systems. CONCLUSION As remote monitoring becomes more common there will be greater recognition of failures in temperature control, hydraulics, and balancing in water systems, and there remains much to learn as we adopt this developing technology within our hospitals.
Collapse
Affiliation(s)
- C A Whapham
- Independent Water Hygiene Consultant, Ludlow, UK.
| | - J T Walker
- Independent Microbiology Consultant, Walker on Water, Salisbury, UK
| |
Collapse
|
2
|
Inkster T, Walker J, Weinbren M. Water-free patient care: a narrative review of the literature and discussion of the pressing need for a way forward. J Hosp Infect 2024; 152:36-41. [PMID: 38969207 DOI: 10.1016/j.jhin.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Florence Nightingale was the first person to recognize the link between the built environment and patient ill-health. More than 160 years later, the threat of the end of the antibiotic era looms large. The antimicrobial resistance action plan focuses on antimicrobial stewardship and developing new therapeutic agents. The risk from the built environment has been ignored, with wastewater systems identified as major sources of antimicrobial resistance within healthcare facilities. England is undertaking the largest healthcare construction programme globally. These facilities will be operating when antimicrobial resistance is predicted to be at its fiercest. Water-free patient care is a strategy for limiting dispersal of antimicrobial resistance, and preventing patient infections that need further evaluation in new hospitals. METHODS A narrative review was undertaken using the terms: waterless/water-free units; waterless/water-free care; sink reduction; sink removal; and washing without water. PubMed, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects were searched from January 2000 to February 2024 for reviews and original articles. Unit type, geographical location, reasons for a waterless/water-free approach, and outcomes were recorded. FINDINGS Seven papers were identified. Four involved adult intensive care units (ICUs), one involved a care of the elderly setting, and two involved neonatal ICUs. In five papers, the aim of intervention was to reduce Gram-negative infections/colonizations. One paper was a systematic review of 'washing without water' which reviewed cost-effectiveness and patient experience. All of the five papers focusing on Gram-negative bacilli reported a reduction in infections or colonizations post intervention. CONCLUSION More studies are highlighting the risks from water and wastewater to patient safety, and the value of water-free strategies in reducing infection rates.
Collapse
Affiliation(s)
- T Inkster
- Antimicrobial Resistance and Healthcare Associated Infection Scotland, Glasgow, UK
| | - J Walker
- Walker on Water, Bishopdown, Salisbury, UK.
| | | |
Collapse
|
3
|
Valciņa O, Pūle D, Ķibilds J, Labecka L, Terentjeva M, Krūmiņa A, Bērziņš A. Evaluation of Genetic Diversity and Virulence Potential of Legionella pneumophila Isolated from Water Supply Systems of Residential Buildings in Latvia. Pathogens 2023; 12:884. [PMID: 37513731 PMCID: PMC10385952 DOI: 10.3390/pathogens12070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Legionella is an opportunistic pathogen with a biphasic life cycle that occasionally infects humans. The aim of the study was to assess the distribution of virulence genes and genetic diversity among L. pneumophila isolated from water supply systems of residential buildings in Latvia. In total, 492 water samples from 200 residential buildings were collected. Identification of Legionella spp. was performed according to ISO 11731, and 58 isolates were subjected to whole-genome sequencing. At least one Legionella-positive sample was found in 112 out of 200 apartment buildings (56.0%). The study revealed extensive sequence-type diversity, where 58 L. pneumophila isolates fell into 36 different sequence types. A total of 420 virulence genes were identified, of which 260 genes were found in all sequenced L. pneumophila isolates. The virulence genes enhC, htpB, omp28, and mip were detected in all isolates, suggesting that adhesion, attachment, and entry into host cells are enabled for all isolates. The relative frequency of virulence genes among L. pneumophila isolates was high. The high prevalence, extensive genetic diversity, and the wide range of virulence genes indicated that the virulence potential of environmental Legionella is high, and proper risk management is of key importance to public health.
Collapse
Affiliation(s)
- Olga Valciņa
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Daina Pūle
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
- Department of Water Engineering and Technology, Riga Technical University, LV-1048 Riga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Linda Labecka
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| |
Collapse
|
4
|
Valciņa O, Pūle D, Ķibilds J, Lazdāne A, Trofimova J, Makarova S, Konvisers G, Ķimse L, Krūmiņa A, Bērziņš A. Prevalence and Genetic Diversity of Legionella spp. in Hotel Water-Supply Systems in Latvia. Microorganisms 2023; 11:microorganisms11030596. [PMID: 36985170 PMCID: PMC10055240 DOI: 10.3390/microorganisms11030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Legionella is one of the most important waterborne pathogens that can lead to both outbreaks and sporadic cases. The majority of travel-associated Legionnaires’ disease (TALD) cases are contracted during hotel stays. The aim of this study was to evaluate the prevalence and genetic diversity of Legionella spp. in hotel water supply systems in Latvia. In total, 834 hot water samples were collected from the water systems of 80 hotels in Latvia. At least one Legionella spp. positive sample was detected in 47 out of 80 hotels (58.8%). Overall, 235 out of 834 samples (28.2%) were Legionella spp. positive. The average hot water temperature in Latvian hotels was 49.8 °C. The most predominant L. pneumophila serogroup (SG) was SG3 which was found in 113 (49.8%) positive samples from 27 hotels. For 79 sequenced L. pneumophila isolates, 21 different sequence types (ST) were obtained, including 3 new types—ST2582, ST2579, and ST2580. High Legionella contamination and high genetic diversity were found in the hotel water supply systems in Latvia, which, together with the insufficient hot water temperature, may indicate that the lack of regulation and control measures may promote the proliferation of Legionella.
Collapse
Affiliation(s)
- Olga Valciņa
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
| | - Daina Pūle
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
- Department of Water Engineering and Technology, Riga Technical University, 1048 Rīga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
| | - Andžela Lazdāne
- Department of Metabolic Genetics Laboratory, Children’s Clinical University Hospital, 1004 Rīga, Latvia
| | - Jūlija Trofimova
- National Reference Laboratory, Riga East University Hospital, 1038 Rīga, Latvia
| | - Svetlana Makarova
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
| | - Genadijs Konvisers
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
| | - Laima Ķimse
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, 1007 Rīga, Latvia
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment “BIOR”, 1076 Rīga, Latvia
- Correspondence: ; Tel.: +371-6780-8972
| |
Collapse
|
5
|
Clinical and Laboratory Diagnosis of Legionella Pneumonia. Diagnostics (Basel) 2023; 13:diagnostics13020280. [PMID: 36673091 PMCID: PMC9858276 DOI: 10.3390/diagnostics13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumonia is a relatively rare but extremely progressive pulmonary infection with high mortality. Traditional cultural isolation remains the gold standard for the diagnosis of Legionella pneumonia. However, its harsh culture conditions, long turnaround time, and suboptimal sensitivity do not meet the clinical need for rapid and accurate diagnosis, especially for critically ill patients. So far, pathogenic detection techniques including serological assays, urinary antigen tests, and mass spectrometry, as well as nucleic acid amplification technique, have been developed, and each has its own advantages and limitations. This review summarizes the clinical characteristics and imaging findings of Legionella pneumonia, then discusses the advances, advantages, and limitations of the various pathogenetic detection techniques used for Legionella pneumonia diagnosis. The aim is to provide rapid and accurate guiding options for early identification and diagnosis of Legionella pneumonia in clinical practice, further easing healthcare burden.
Collapse
|
6
|
Lu J, Yu Z, Ding P, Guo J. Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15108-15119. [PMID: 36251935 DOI: 10.1021/acs.est.2c05537] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although triclosan, as a widely used antiseptic chemical, is known to promote the transmission of antibiotic resistance to diverse hosts in pure culture, it is still unclear whether and how triclosan could affect the transmission of broad-host-range plasmids among complex microbial communities. Here, bacterial culturing, fluorescence-based cell sorting, and high-throughput 16S rRNA gene amplicon sequencing were combined to investigate contributions of triclosan on the transfer rate and range of an IncP-type plasmid from a proteobacterial donor to an activated sludge microbiome. Our results demonstrate that triclosan significantly enhances the conjugative transfer of the RP4 plasmid among activated sludge communities at environmentally relevant concentrations. High-throughput 16S rRNA gene sequencing on sorted transconjugants demonstrates that triclosan not only promoted the intergenera transfer but also the intragenera transfer of the RP4 plasmid among activated sludge communities. Moreover, triclosan mediated the transfer of the RP4 plasmid to opportunistic human pathogens, for example, Legionella spp. The mechanism of triclosan-mediated conjugative transfer is primarily associated with excessive oxidative stress, followed by increased membrane permeability and provoked SOS response. Our findings offer insights into the impacts of triclosan on the dissemination of antibiotic resistance in the aquatic environmental microbiome.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Liu J, Qiu RX. Lung Ultrasound Monitoring of Legionella Ventilator-Associated Pneumonia in an Extremely Low-Birth-Weight Infant. Diagnostics (Basel) 2022; 12:2253. [PMID: 36140654 PMCID: PMC9497615 DOI: 10.3390/diagnostics12092253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common complication of different severe lung diseases that need to be treated with mechanical ventilation in newborn infants. However, VAP due to Legionella pneumophila infection is rarely reported in the literature, especially in extremely low-birth-weight (ELBW) infants. Lung ultrasound (LUS) has been used in the diagnosis of neonatal pneumonia, but there is no literature on the ultrasound characteristics of Legionella-VAP in ELBW infants. This paper introduced the typical LUS findings of Legionella-VAP in ELBW infants, which mainly includes severe and large-area lung consolidation and atelectasis in the bilateral lungs; whether there is blood supply in the consolidated area has an important reference value for predicting the prognosis. In addition, the treatment and management experience were also introduced together, thereby helping us to deepen the understanding of the disease and avoid missed diagnoses.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neonatology and NICU, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Ru-Xin Qiu
- Department of Neonatology and NICU, Beijing Chao-Yang District Maternal and Child Healthcare Hospital, Beijing 100021, China
| |
Collapse
|
8
|
Djordjevic Z, Folic M, Petrovic I, Zornic S, Stojkovic A, Miljanovic A, Randjelovic S, Jovanovic S, Jovanovic M, Jankovic S. An outbreak of Legionnaires' disease in newborns in Serbia. Paediatr Int Child Health 2022; 42:59-66. [PMID: 35944175 DOI: 10.1080/20469047.2022.2108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Legionnaires' disease is an atypical pneumonia caused by inhaling small droplets of water containing the bacterium Legionella spp. In newborns, it is a rare event, usually associated with water births and the use of air conditioning systems or air humidifiers. A nosocomial outbreak of Legionnaires' disease in the maternity ward of a secondary-care hospital in Arandjelovac, Serbia is described.Two male newborns were found to be infected with Legionnella pneumophila. On Days 7 and 6 of life, respectively, they were transferred to a tertiary-care hospital with signs of severe pneumonia which was radiologically confirmed. L. pneumophila was detected in tracheal secretions from both infants by RT-PCR, and its antigens were also positive in urine samples. The source of infection in the secondary-care hospital was the internal hot water heating system, and the main contributory factor to the emergence of the infection was the low temperature of the hot water which did not kill the bacteria during the available exposure time.These two cases highlight the importance of being cautious about possible Legionnaires' disease in maternity wards with outdated or irregularly maintained internal water supply systems. The adoption of official guidelines for the control and regular maintenance of water supply systems, including the multidisciplinary cooperation of all relevant parties, forms the basis for direct monitoring for Legionella and the prevention of new outbreaks.Abbreviations: BCYE: buffered charcoal yeast extract agar; GVPC: glycine vancomycin polymyxin cycloheximide agar; LD - Legionnaires' disease; TR-PCR: Reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Zorana Djordjevic
- Department of Hospital Infection Control, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Marko Folic
- Department of Clinical Pharmacology, University Clinical Centre of Kragujevac and Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Petrovic
- Department of Clinical Microbiology, University of Kragujevac Clinical Centre, Kragujevac, Serbia
| | - Sanja Zornic
- Department of Clinical Microbiology, University of Kragujevac Clinical Centre, Kragujevac, Serbia
| | - Andjelka Stojkovic
- Institute of Public Health Kragujevac, Centre for Disease Control and Prevention, Kragujevac, Serbia
| | - Ana Miljanovic
- Paediatric Clinic, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sladjana Randjelovic
- Human Ecology and Ecotoxicology Laboratory, City Institute for Public Health Belgrade, Belgrade, Serbia
| | - Snezana Jovanovic
- Department of Medical Microbiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Milica Jovanovic
- Department of Medical Microbiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Slobodan Jankovic
- Department of Clinical Pharmacology, University Clinical Centre of Kragujevac and Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Huang CK, Weerasekara A, Bond PL, Weynberg KD, Guo J. Characterizing the premise plumbing microbiome in both water and biofilms of a 50-year-old building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149225. [PMID: 34340073 DOI: 10.1016/j.scitotenv.2021.149225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
The premise plumbing portion of drinking water distribution systems (DWDS) has several characteristics that may favor microbial growth in the form of biofilms. These microbial communities are implicated as infectious sources for the spread of opportunistic waterborne pathogens by supporting their complex ecology and transmission through DWDS outlets to susceptible individuals. However, there is limited understanding of the drinking water biofilms in real premise plumbing networks due to challenges with accessibility. Using a combination of culture-dependent and culture-independent approaches, this study comprehensively characterized the premise plumbing microbiome of a 50-year-old university building, inclusive of water and biofilm samples. Microbial diversity in the water samples were more taxonomically diverse in comparison to the mature drinking water biofilms, which were dominated with biofilm-formers and opportunistic pathogens, such as Mycobacterium spp. A model opportunistic pathogen, Legionella spp., was only detectable in water samples using quantitative PCR but could not be detected in any of the drinking water biofilms using either qPCR or culture-dependent approaches, highlighting the limitations of detection methods in these environments. This study presents preliminary findings on the microbial dynamics and complexity in premise plumbing networks, which may support public health management and the development of strategies to eliminate microbial risks to human health.
Collapse
Affiliation(s)
- Casey K Huang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Anjani Weerasekara
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Febbo JA, Ketai L. Emerging Pulmonary Infections in Clinical Practice. ADVANCES IN CLINICAL RADIOLOGY 2021; 3:103-124. [PMID: 38620910 PMCID: PMC8169325 DOI: 10.1016/j.yacr.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Jennifer Ann Febbo
- Department of Radiology, University of New Mexico, 2211 Lomas Boulevard Northeast, Albuquerque, NM 87106, USA
| | - Loren Ketai
- Department of Radiology, University of New Mexico, 2211 Lomas Boulevard Northeast, Albuquerque, NM 87106, USA
| |
Collapse
|