1
|
Zhang Q, Zhang C, Wang Y, Cong L, Liu K, Xu Z, Jiang C, Zhou W, Zhang C, Dong Y, Feng J, Qiu C, Du Y. Quantitative assessments of retinal macular structure among rural-dwelling older adults in China: a population-based, cross-sectional, optical coherence tomography study. BMJ Open 2024; 14:e079006. [PMID: 38320838 PMCID: PMC10860037 DOI: 10.1136/bmjopen-2023-079006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVES To quantitatively assess and compare retinal macular structures of rural-dwelling older adults in China using two different optical coherence tomography (OCT) scanners and to examine their associations with demographic, lifestyle, clinical and ocular factors. DESIGN, SETTING AND PARTICIPANTS This population-based, cross-sectional study included 971 participants (age ≥60 years) derived from the Multimodal Interventions to Delay Dementia and Disability in Rural China study. We collected data on demographics, lifestyle factors, clinical conditions (eg, cardiovascular disease (CVD)) and ocular factors (eg, visual acuity and spherical equivalent). We used two models of spectral-domain OCT to measure macular parameters in nine Early Treatment Diabetic Retinopathy Study subfields. Data were analysed using the multiple general linear models. RESULTS Spectralis OCT demonstrated higher macular thickness but a lower macular volume than Primus 200 OCT (p<0.05). Nasal quadrant of the inner and outer subfields was the thickest, followed by superior quadrant. Adjusting for multiple potential confounding variables, older age was significantly correlated with lower average inner and outer macular thicknesses and overall macular volume. Men had higher macular parameters than women. The presence of CVD was correlated with lower central macular thickness (β=-6.83; 95% CI: -13.08 to -0.58; p=0.032). Middle school or above was associated with higher average inner macular thickness (β=7.85; 95% CI: 1.14 to 14.55; p=0.022) and higher spherical equivalent was correlated with lower average inner macular thickness (β=-1.78; 95% CI: -3.50 to -0.07; p=0.042). CONCLUSIONS Macular thickness and volume assessed by Spectralis and Primus 200 OCT scanners differ. Older age and female sex are associated with lower macular thickness and volume. Macular parameters are associated with education, CVD and spherical equivalent. TRIAL REGISTERATION NUMBER MIND-China study (ChiCTR1800017758).
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Cong Zhang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhe Xu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chunyan Jiang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiyan Zhou
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Ophthalmology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, JInan, Shandong, People's Republic of China
| | - Chunxiao Zhang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Ophthalmology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, JInan, Shandong, People's Republic of China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Jianli Feng
- Department of Neurology, Shandong Provincial ENT Hospital, Jinan, Shandong, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurobiology, Aging Research Center and Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - YiFeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| |
Collapse
|
2
|
OCT Angiography: A Technique for the Assessment of Retinal and Optic Nerve Diseases in the Pediatric Population. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography angiography (OCT-A) is a novel, rapidly evolving, non-invasive imaging technique that allows images of the retinal vasculature to be obtained in a few seconds. Blood vessels of different retinal vascular plexuses and the foveal avascular zone (FAZ) can be examined without the administration of any contrast or dye. Due to these characteristics, OCT-A could be an excellent complementary test to study retinal vascularization in children. Until now, most of the studies with OCT-A have been conducted in adults and only a few have been carried out in children. In this review, we describe the principles and advantages of OCT-A over traditional imaging methods and provide a summary of the OCT-A findings in retinopathy of prematurity and other retinal and optic disc pathologies in children. In view of the promising results from studies, the advantages of a relatively rapid and non-invasive method to assess the retinal vasculature makes OCT-A a tool of which applications in the field of pediatric ophthalmology will be expanded in the near future for patient diagnosis and follow-up in every day clinical practice.
Collapse
|