1
|
Fioretto BS, Rosa I, Andreucci E, Mencucci R, Marini M, Romano E, Manetti M. Pharmacological Stimulation of Soluble Guanylate Cyclase Counteracts the Profibrotic Activation of Human Conjunctival Fibroblasts. Cells 2024; 13:360. [PMID: 38391973 PMCID: PMC10887040 DOI: 10.3390/cells13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Conjunctival fibrosis is a serious clinical concern implicated in a wide spectrum of eye diseases, including outcomes of surgery for pterygium and glaucoma. It is mainly driven by chronic inflammation that stimulates conjunctival fibroblasts to differentiate into myofibroblasts over time, leading to abnormal wound healing and scar formation. Soluble guanylate cyclase (sGC) stimulation was found to suppress transforming growth factor β (TGFβ)-induced myofibroblastic differentiation in various stromal cells such as skin and pulmonary fibroblasts, as well as corneal keratocytes. Here, we evaluated the in vitro effects of stimulation of the sGC enzyme with the cell-permeable pyrazolopyridinylpyrimidine compound BAY 41-2272 in modulating the TGFβ1-mediated profibrotic activation of human conjunctival fibroblasts. Cells were pretreated with the sGC stimulator before challenging with recombinant human TGFβ1, and subsequently assayed for viability, proliferation, migration, invasiveness, myofibroblast marker expression, and contractile properties. Stimulation of sGC significantly counteracted TGFβ1-induced cell proliferation, migration, invasiveness, and acquisition of a myofibroblast-like phenotype, as shown by a significant downregulation of FAP, ACTA2, COL1A1, COL1A2, FN1, MMP2, TIMP1, and TIMP2 mRNA levels, as well as by a significant reduction in α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein expression. In addition, pretreatment with the sGC stimulator was capable of significantly dampening TGFβ1-induced acquisition of a contractile phenotype by conjunctival fibroblasts, as well as phosphorylation of Smad3 and release of the proinflammatory cytokines IL-1β and IL-6. Taken together, our findings are the first to demonstrate the effectiveness of pharmacological sGC stimulation in counteracting conjunctival fibroblast-to-myofibroblast transition, thus providing a promising scientific background to further explore the feasibility of sGC stimulators as potential new adjuvant therapeutic compounds to treat conjunctival fibrotic conditions.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Rita Mencucci
- Eye Clinic, Careggi Hospital, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
2
|
Sharif NA. Human experience and efficacy of omidenepag isopropyl (Eybelis®; Omlonti®): Discovery to approval of the novel non-prostaglandin EP2-receptor-selective agonist ocular hypotensive drug. Curr Opin Pharmacol 2024; 74:102426. [PMID: 38168596 DOI: 10.1016/j.coph.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
More than 75 million people worldwide suffer from ocular hypertension (OHT)-associated retinal and optic nerve degenerative diseases that cause visual impairment and can lead to blindness. In an effort to find novel pharmaceutical therapeutics to combat OHT with reduced side-effect potential, several emerging drug candidates have advanced to human proof-of-concept in recent years. One such compound is a nonprostaglandin (non-PG) EP2-receptor-selective agonist (omidenepag isopropyl ester). Omidenepag (OMD; free acid form) is a novel non-PG that selectively binds to and activates the human EP2-prostglandin receptor (EP2R) with a high affinity (Ki = 3.6 nM) and which potently generates intracellular cAMP in living cells (EC50 = 3.9-8.3 nM). OMD significantly downregulated COL12A1 and COL13A1 mRNAs in human trabecular meshwork (TM) cells, a tissue involved in the pathogenesis of OHT. Omidenepag isopropyl (OMDI) potently and efficaciously lowered intraocular pressure (IOP) in ocular normotensive rabbits, dogs, and monkeys, and also in ocular hypertension (OHT) Cynomolgus monkeys, after a single topical ocular (t.o.) instillation at doses of 0.0001-0.01%. No reduction in IOP-lowering response to OMDI was observed after repeated t.o. dosing with OMDI in dogs and monkeys. Additive IOP reduction to OMDI was noted with brinzolamide, timolol, and brimonidine in rabbits and monkeys. OMDI 0.002% t.o. decreased IOP by stimulating the conventional (TM) and uveoscleral (UVSC) outflow of aqueous humor (AQH) in OHT monkeys. In a Phase-III clinical investigation, 0.002% OMDI (once daily t.o.) reduced IOP by 5-6 mmHg in OHT/primary open-angle glaucoma (POAG) patients (22-34 mmHg baseline IOPs) that was maintained over 12-months. In an additional month-long clinical study, 0.002% OMDI induced IOP-lowering equivalent to that of latanoprost (0.005%), a prostanoid FP-receptor agonist, thus OMDI was noninferior to latanoprost. Additive IOPreduction was also noted in OHT/OAG patients when OMDI (0.002%, once daily t.o.) and timolol (0.05%, twice daily t.o.) were administered. Patients with OHT/POAG who were low responders or nonresponders to latanoprost (0.005%, q.d.; t.o.) experienced significant IOP-lowering (additional approximately 3 mmHg) when they were switched over to OMDI 0.002% (q.d.; t.o.). No systemic or ocular adverse reactions (e.g. iris color changes/deepening of the upper eyelid sulcus/abnormal eyelash growth) were noted after a year-long, once-daily t.o. dosing with 0.002 % OMDI in OHT/POAG patients. However, OMDI caused transient conjunctival hyperemia. These characteristics of OMDI render it a suitable new medication for treating OHT and various types of glaucoma, especially where elevated IOP is implicated.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-ACP Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute (SERI), Singapore; Institute of Ophthalmology, University College London (UCL), London UK; Imperial College of Science and Technology, St. Mary's Campus, London UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX USA.
| |
Collapse
|
3
|
Yin Q, Zheng X, Song Y, Wu L, Li L, Tong R, Han L, Bian Y. Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front Pharmacol 2023; 14:1272073. [PMID: 38186653 PMCID: PMC10771398 DOI: 10.3389/fphar.2023.1272073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujie Song
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Design, synthesis and biological evaluation of new 3,4-dihydroquinoxalin-2(1H)-one derivatives as soluble guanylyl cyclase (sGC) activators. Heliyon 2022; 8:e11438. [DOI: 10.1016/j.heliyon.2022.e11438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
5
|
Chirkov YY, Nguyen TH, Horowitz JD. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. Int J Mol Sci 2022; 23:1042. [PMID: 35162966 PMCID: PMC8835624 DOI: 10.3390/ijms23031042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
The propensity towards platelet-rich thrombus formation increases substantially during normal ageing, and this trend is mediated by decreases in platelet responsiveness to the anti-aggregatory nitric oxide (NO) and prostacyclin (PGI2) pathways. The impairment of soluble guanylate cyclase and adenylate cyclase-based signalling that is associated with oxidative stress represents the major mechanism of this loss of anti-aggregatory reactivity. Platelet desensitization to these autacoids represents an adverse prognostic marker in patients with ischemic heart disease and may contribute to increased thrombo-embolic risk in patients with heart failure. Patients with platelet resistance to PGI2 also are unresponsive to ADP receptor antagonist therapy. Apart from ischemia, diabetes and aortic valve disease are also associated with impaired anti-aggregatory homeostasis. This review examines the association of impaired platelet cyclic nucleotide (i.e., cGMP and cAMP) signalling with the emerging evidence of thromboembolic risk in cardiovascular diseases, and discusses the potential therapeutic strategies targeting this abnormality.
Collapse
Affiliation(s)
| | | | - John D. Horowitz
- Cardiology Laboratory, Basil Hetzel Institute, The Queen Elizabeth Hospital, The University of Adelaide, Adelaide 5011, Australia; (Y.Y.C.); (T.H.N.)
| |
Collapse
|
6
|
García-Medina JJ, Pinazo-Durán MD. Updates in Clinical and Translational Glaucoma Research. J Clin Med 2021; 11:jcm11010221. [PMID: 35011961 PMCID: PMC8745984 DOI: 10.3390/jcm11010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a sight-threatening disease and the primum mobile of irreversible blindness worldwide [...].
Collapse
Affiliation(s)
- José Javier García-Medina
- Department of Ophthalmology, General University Hospital Morales Meseguer, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (J.J.G.-M.); (M.D.P.-D.)
| | - Maria Dolores Pinazo-Durán
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain
- Ophthalmic Research Unit “Santiago Grisolia”/FISABIO, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmobiology Group, University of Valencia, 46010 Valencia, Spain
- Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (J.J.G.-M.); (M.D.P.-D.)
| |
Collapse
|
7
|
Bastia E, Toris CB, Brambilla S, Galli C, Almirante N, Bergamini MVW, Masini E, Sgambellone S, Unser AM, Ahmed F, Torrejon KY, Navratil T, Impagnatiello F. NCX 667, a Novel Nitric Oxide Donor, Lowers Intraocular Pressure in Rabbits, Dogs, and Non-Human Primates and Enhances TGFβ2-Induced Outflow in HTM/HSC Constructs. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 33704360 PMCID: PMC7960798 DOI: 10.1167/iovs.62.3.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose NCX 667, a novel nitric oxide (NO) donor with an isomannide core, was characterized for its IOP-lowering ability in animal models of ocular hypertension and glaucoma. Bioengineered human trabecular meshwork/Schlemm's canal (HTM/HSC) constructs were used to explore the mode of action. Methods Ocular normotensive New Zealand white (NZW) rabbits (ONT-rabbits), spontaneously ocular hypertensive pigmented Dutch-belted rabbits (sOHT-rabbits), hypertonic saline (5%)–induced transient ocular hypertensive NZW rabbits (tOHT-rabbits), ocular normotensive Beagle dogs (ONT-dogs), and laser-induced ocular hypertensive cynomolgus monkeys (OHT-monkeys) were used. NCX 667 or vehicle (30 µL) was instilled in a crossover, masked fashion and intraocular pressure (IOP) measured before dosing (baseline) and for several hours thereafter. The ONT-rabbits were used for cyclic guanosine monophosphate (cGMP) determination in ocular tissues after ocular dosing with NCX 667. Transforming growth factor-beta2 (TGFβ2) (2.5 ng/mL, six days)–treated HTM/HSC constructs were used to address changes in outflow facility. Results NCX 667 resulted in robust and dose-dependent IOP decrease in all models used. Maximal IOP-lowering efficacy at 1% was −4.1 ± 0.6, −12.2 ± 2.7, −10.5 ± 2.0, −5.3 ± 0.8, and −6.6 ± 1.9 mmHg, respectively, in ONT-dogs, sOHT-rabbits, tOHT-rabbits, ONT-rabbits, and OHT-monkeys. In ONT-rabbits NCX 667 (1%) increased cGMP in aqueous humor (AH) but not in retina and iris/ciliary body. NCX 667 concentration-dependently increased outflow facility in TGFβ2-treated HTM/HSC constructs (outflow facility, 0.10 ± 0.06 and 0.30 ± 0.10 µL/min/mmHg/mm2, respectively, in vehicle- and NCX 667–treated constructs). Conclusions NCX 667 leads to robust IOP lowering in several animal models. Evidence in HTM/HSC constructs indicate that the IOP reduction likely results from NO-mediated increase of the conventional outflow pathway. Other mechanisms including changes in AH production and episcleral vein pressure may not be excluded at this time.
Collapse
Affiliation(s)
| | - Carol B Toris
- University of Nebraska Medical Center, Omaha, Nebraska, United States
| | | | | | | | - Michael V W Bergamini
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Emanuela Masini
- Department of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Sgambellone
- Department of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | - Andrea M Unser
- Glauconicx Biosciences Inc., Albany, New York, Unites States
| | - Feryan Ahmed
- Glauconicx Biosciences Inc., Albany, New York, Unites States
| | | | - Tomas Navratil
- Nicox Ophthalmics, Inc., Durham, North Carolina, United States
| | | |
Collapse
|
8
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Lin K, Cabral P, Ekpenyong O, Bader SE, Galvao J, Kim Y, Lu SX, Tam YT, Bruder M, Rearden P, Shankaran H, Beaumont M. A Surrogate Matrix-Based Approach Toward Multiplexed Quantitation of an sGC Stimulator and cGMP in Ocular Tissue and Plasma. Toxicol Pathol 2020; 49:544-554. [PMID: 32851936 DOI: 10.1177/0192623320948836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A liquid chromatography-tandem mass spectrometry assay was developed and qualified for the multiplexed quantitation of a small molecule stimulator of soluble guanylate cyclase (sGC) and its target engagement biomarker, 3',5'-cyclic guanosine monophosphate (cGMP), in ocular tissues and plasma from a single surrogate matrix calibration curve. A surrogate matrix approach was used in this assay due to the limited quantities of blank ocular matrices in a discovery research setting. After optimization, the assay showed high accuracy, precision, and recovery as well as parallelism between the surrogate matrix and the biological matrices (rabbit plasma, vitreous, and retina-choroid). This assay provided pharmacokinetic and target engagement data after intravitreal administration of the sGC stimulator. The nitric oxide-sGC-cGMP pathway is a potential target to address glaucoma. Increasing sGC-mediated production of cGMP could improve aqueous humor outflow and ocular blood flow. The sGC stimulator showed dose-dependent exposure in rabbit vitreous, retina-choroid, and plasma. The cGMP exhibited a delayed yet sustained increase in vitreous humor but not retina-choroid. Multiplexed measurement of both pharmacokinetic and target engagement analytes reduced animal usage and provided improved context for interpreting PK and PD relationships.
Collapse
Affiliation(s)
- Kenneth Lin
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | - Pablo Cabral
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | | | | | - Joana Galvao
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | | | - Sherry X Lu
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | - Yu Tong Tam
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | - Marc Bruder
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | - Paul Rearden
- 2793Merck & Co., Inc, South San Francisco, CA, USA
| | | | | |
Collapse
|
10
|
Tyrosine 135 of the β1 subunit as binding site of BAY-543: Importance of the Y-x-S-x-R motif for binding and activation by sGC activator drugs. Eur J Pharmacol 2020; 881:173203. [DOI: 10.1016/j.ejphar.2020.173203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
|
11
|
Dumouchel JL, Argikar UA, Adams CM, Prasanna G, Ehara T, Kim S, Breen C, Mogi M. Understanding metabolism related differences in ocular efficacy of MGV354. Xenobiotica 2020; 51:5-14. [PMID: 32662714 DOI: 10.1080/00498254.2020.1794658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MGV354 was being developed as a novel ocular therapy for lowering of intraocular pressure, a key modifiable risk factor for glaucoma. MGV354 is an activator of soluble guanylate cyclase, an enzyme known to be involved in the regulation of IOP. MGV354 has been shown to robustly lower IOP over 24 h after a single topical ocular drop in rabbit and monkey pharmacology models. However, MGV354 failed to produce similar results in patients with ocular hypertension or open-angle glaucoma. With an objective of explaining the lack of efficacy in the clinic, we attempted to study whether human metabolism was significantly different from animal metabolism. The present study documents the investigation of metabolism of MGV354 in an effort to understand potential differences in biotransformation pathways of MGV354 in rabbits, monkeys, and humans. Overall twenty-six metabolites, formed via oxidative and conjugative pathways, were identified in vitro and in vivo. In vitro hepatic metabolism was qualitatively similar across species, with minor but distinct differences. There were no observable interspecies differences in the hepatic and ocular metabolism of MGV354. Although ocular metabolism was not as extensive as hepatic, the results do not explain the lack of efficacy of MGV354 in clinical studies.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Upendra A Argikar
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Ganesh Prasanna
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Takeru Ehara
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sean Kim
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Chris Breen
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Muneto Mogi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
12
|
Elgert C, Rühle A, Sandner P, Behrends S. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC. Biochem Pharmacol 2019; 163:142-153. [DOI: 10.1016/j.bcp.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
13
|
Mietzner R, Breunig M. Causative glaucoma treatment: promising targets and delivery systems. Drug Discov Today 2019; 24:1606-1613. [PMID: 30905679 DOI: 10.1016/j.drudis.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Glaucoma is one of the most common causes of blindness worldwide. Elevated intraocular pressure (IOP) is the major modifiable risk factor of the disease. Conventional therapy suffers from poor compliance, low bioavailability, and the lack of causative treatment options. To improve therapeutic success, it is crucial to identify major mediators of pathological changes associated with elevated IOP and to intervene at the molecular level. Here, we discuss relevant key functions of transforming growth factor-β2 (TGF-β2), connective tissue growth factor (CTGF), integrins, Rho-associated kinase (ROCK), and nitric oxide (NO) with regard to the onset of glaucoma, highlighting new drug delivery approaches for causative treatment.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|