Suwankomonkul S, Khantachawana A, Changsiripun C. Comparison of cold-hardening bending and direct electric resistance heat treatment on the mechanical properties and transformation temperature of NiTi archwire: An in vitro study.
Int Orthod 2019;
18:147-153. [PMID:
31685433 DOI:
10.1016/j.ortho.2019.09.003]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES
The aim of this investigation was (1) to compare the effects of cold-hardening bending and direct electric resistance heat treatment (DERHT) methods; and (2) to compare the effects of offsets and angulations on the mechanical properties and thermal analysis of NiTi alloy archwire.
METHODS
Nickel-titanium (NiTi) archwires (Ormco, Glendora, CA), 0.016×0.022-inch, were bent by cold-hardening bending and DERHT methods into 1-mm, 2-mm, or 3-mm offset for a 3-point bending test, and at angles of 30°, 45°, or 60° to the horizontal plane for testing the change in transformation temperature (Af) measured by differential scanning calorimetry (DSC). The data were analysed using ANOVA followed by the Scheffe post-hoc test.
RESULTS
The 3-point bending test results of the cold-hardening bending and DERHT methods were not significantly different between the 1-mm, 2-mm and 3-mm offset groups (95% CI: -0.05 to 0.97; P=0.082, 95% CI: -0.65 to 0.74; P=0.983 and 95% CI: -0.61 to 0.98; P=0.813, respectively). Increasing the offset resulted in a significantly decreased force in the 3-point bending test (P<0.001). The Af temperatures of the cold-hardening bending and DERHT methods were not significantly different for the 30°, 45°, and 60° bending angulations (95% CI: -1.93 to 1.39; P=0.876, 95% CI: -1.2 to 0.87; P=0.878, 95% CI: -2.24 to 1.18; P=0.636, respectively). Af temperatures were not influenced by different bending angulations.
CONCLUSIONS
NiTi archwire shape can be modified by using both cold-hardening and DERHT bending methods, because the mechanical properties and Af temperature are not affected. However, the bending distance has an effect on the mechanical properties.
Collapse