1
|
Perry AS, Amancherla K, Huang X, Lance ML, Farber-Eger E, Gajjar P, Amrute J, Stolze L, Zhao S, Sheng Q, Joynes CM, Peng Z, Tanaka T, Drakos SG, Lavine KJ, Selzman C, Visker JR, Shankar TS, Ferrucci L, Das S, Wilcox J, Patel RB, Kalhan R, Shah SJ, Walker KA, Wells Q, Tucker N, Nayor M, Shah RV, Khan SS. Clinical-transcriptional prioritization of the circulating proteome in human heart failure. Cell Rep Med 2024; 5:101704. [PMID: 39226894 PMCID: PMC11524958 DOI: 10.1016/j.xcrm.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Given expanding studies in epidemiology and disease-oriented human studies offering hundreds of associations between the human "ome" and disease, prioritizing molecules relevant to disease mechanisms among this growing breadth is important. Here, we link the circulating proteome to human heart failure (HF) propensity (via echocardiographic phenotyping and clinical outcomes) across the lifespan, demonstrating key pathways of fibrosis, inflammation, metabolism, and hypertrophy. We observe a broad array of genes encoding proteins linked to HF phenotypes and outcomes in clinical populations dynamically expressed at a transcriptional level in human myocardium during HF and cardiac recovery (several in a cell-specific fashion). Many identified targets do not have wide precedent in large-scale genomic discovery or human studies, highlighting the complementary roles for proteomic and tissue transcriptomic discovery to focus epidemiological targets to those relevant in human myocardium for further interrogation.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kaushik Amancherla
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoning Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Junedh Amrute
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Kory J Lavine
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Selzman
- Department of Cardiac Surgery, University of Utah School of Medicine, Division of Cardiothoracic Surgery, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Joseph R Visker
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Thirupura S Shankar
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Saumya Das
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Wilcox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi B Patel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Quinn Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Jones IC, Dass CR. Roles of pigment epithelium-derived factor in cardiomyocytes: implications for use as a cardioprotective therapeutic. J Pharm Pharmacol 2023:7146108. [PMID: 37104852 DOI: 10.1093/jpp/rgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
3
|
Liao J, Shao M, Wang Y, Yang P, Fu D, Liu M, Gao T, Wei K, Li X, Du J. Xuesaitong promotes myocardial angiogenesis in myocardial infarction mice by inhibiting MiR-3158-3p targeting Nur77. Aging (Albany NY) 2023; 15:4084-4095. [PMID: 37204425 PMCID: PMC10258009 DOI: 10.18632/aging.204671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
This study aims to investigate the regulatory effect of Xuesaitong (XST) and miR-3158-3p on angiogenesis. All mice were randomly assigned into Sham group, Model group, XST group, XST + miR-3158-3P-overexpression (miRNA-OE) group. XST was found to increase the left ventricular anterior wall thickness at end diastole and end systole (LVAWd and LVAWs), left ventricular internal dimension at end diastole and end systole (LVIDd and LVIDs), fractional shortening (FS), and ejection fraction (EF) and decrease the proportion of fibrotic areas in mice. In contrast to those in Sham group, the protein expressions of Nur77, p-PI3K, HIF-1α, VEGFs, COX-2 in the heart tissues of mice in Model group were elevated and further increased after XST treatment in comparison with those in Model group. Nur77-/- mice were utilized. It was found that XST enhanced cell viability through a methyl thiazolyl tetrazolium assay and facilitated angiogenesis in each group, as assessed by a catheter formation assay. Specifically, XST was shown to promote the formation of blood vessels. Moreover, the protein expression levels of Associated proteins in the heart tissues of Nur77-/- mice were dramatically reduced in mice in Model and XST group compared with those in WT mice. Additionally, the above-mentioned protein expressions in the heart tissues of Nur77-/- mice did not change significantly in mice in Model + miRNA-OE + XST group compared with those in WT mice, suggesting that miR-3158-3p can specifically inhibit the expression of Nur77. In conclusion, XST inhibits miR-3158-3p targeting Nur77 to facilitate myocardial angiogenesis in mice with myocardial infarction.
Collapse
Affiliation(s)
- Jiangquan Liao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Yan Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Peng Yang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Dongliang Fu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Mengru Liu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Tong Gao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Kangkang Wei
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlun Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Jinhang Du
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
5
|
Qin X, Jia C, Liang J, Chen J, Liu X, Chao Z, Qin H, Yuan Y, Liu Z, Zhang Z, Dong H, Zhang H. PEDF is an antifibrosis factor that inhibits the activation of fibroblasts in a bleomycin-induced pulmonary fibrosis rat model. Respir Res 2022; 23:100. [PMID: 35459189 PMCID: PMC9027047 DOI: 10.1186/s12931-022-02027-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous and fatal lung disease. In addition to dense fibrous tissue, abnormal angiogenesis is also an important feature of IPF. Pigment epithelium-derived factor (PEDF) is an angiogenesis inhibitor and a potential anti-fibrous factor. The purpose of this experiment is to observe the effect of PEDF on bleomycin (BLM)-induced pulmonary fibrosis in rats. Methods In vivo, pathological examination and detection of related factors were performed on pulmonary fibrosis induced by BLM in rats, and the temporal and spatial distribution of PEDF was investigated. Furthermore, lung gene delivery (PEDF-adeno-associated virus) was performed to investigate the effect of PEDF on pulmonary fibrosis. In vitro, lentiviral vectors were used to construct PEDF over-expression or knock out primary rat lung (PRL) fibroblasts. The effect of PEDF on fibroblast activation under TGF-β1 stimulation was evaluated, and the activation of TGF-β1/smad pathway and PPAR-γ expression (in the presence or absence of PPAR-γ inhibitors) were analyzed. Results In vivo results showed that PEDF expression decreased during the inflammatory phase and increased during the fibrotic phase. PEDF could inhibit the progression of pulmonary fibrosis in rats. In vitro results showed that PEDF could effectively inhibit TGF-β1-stimulated fibroblast activation and reduce the production of α-SMA and collagen-I. PEDF could inhibit the TGF-β1/smad pathway by up-regulating the activity of PPAR-γ. Conclusions PEDF can act as an anti-fibrotic factor, inhibit fibroblast activation by upregulating PPAR-γ activity and reduce BLM-induced pulmonary fibrosis in rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02027-4.
Collapse
Affiliation(s)
- Xichun Qin
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Caili Jia
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Jingtian Liang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Jiali Chen
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Zhixiang Chao
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hao Qin
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhongming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
6
|
Yamagishi SI, Koga Y, Sotokawauchi A, Hashizume N, Fukahori S, Matsui T, Yagi M. Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer. Curr Pharm Des 2020; 25:313-324. [PMID: 30892156 DOI: 10.2174/1381612825666190319112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is one of the serine protease inhibitors with multifunctional properties, which is produced by various types of organs and tissues. There is an accumulating body of evidence that PEDF plays an important role in the maintenance of tissue homeostasis. Indeed, PEDF not only works as an endogenous inhibitor of angiogenesis, but also suppresses oxidative stress, inflammatory and thrombotic reactions in cell culture systems, animal models, and humans. Furthermore, we, along with others, have found that PEDF inhibits proliferation of, and induces apoptotic cell death in, numerous kinds of tumors. In addition, circulating as well as tumor expression levels of PEDF have been inversely associated with tumor growth and metastasis. These observations suggest that supplementation of PEDF proteins and/or enhancement of endogenous PEDF expression could be a novel therapeutic strategy for the treatment of cancer. Therefore, in this paper, we review the effects of PEDF on diverse types of cancer, and discuss its therapeutic perspectives.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Koga
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan.,Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
7
|
Brook N, Brook E, Dharmarajan A, Chan A, Dass CR. The role of pigment epithelium-derived factor in protecting against cellular stress. Free Radic Res 2019; 53:1166-1180. [PMID: 31760841 DOI: 10.1080/10715762.2019.1697809] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since its discovery as a neurotrophic factor in retinal pigmented epithelium cells in the late 1980s, there has been an increase in understanding of the role that pigment epithelium-derived factor (PEDF) plays in cellular functions. PEDF plays an important role in mediating cellular protection during exposure to oxidative stress and inflammation by preventing stress-induced angiogenesis and apoptosis. PEDF acts to reduce oxidative stress by promoting mitochondrial stability and by regulating the expression of enzymes involved in ROS accumulation and clearance. PEDF protects against the negative effects of oxidative stress by regulating cell survival pathways and the expression of inflammatory and proangiogenic mediators. PEDF-mediated cellular protection may be of clinical importance in diseases characterised by oxidative stress, chronic inflammation and pathological neovascularization, indicating that targeting PEDF may be a potential focus for therapeutic interventions in chronic diseases. In this review, we provide a historical perspective on the discoveries of PEDF interactions and functions, and discuss recent in vitro, in vivo and clinical findings to provide a current summary of the important protective effects following cellular exposure to stress stimuli and future clinical potential of PEDF.
Collapse
Affiliation(s)
- Naomi Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Emily Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Arun Dharmarajan
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia.,Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley, Australia.,Hollywood Private Hospital, Breast Clinical Trials Unit, Breast Cancer Research Centre-Western Australia, Nedlands, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
8
|
Yuan Y, Huang B, Miao H, Liu X, Zhang H, Qiu F, Liu Z, Zhang Y, Dong H, Zhang Z. A “Hibernating-Like” Viable State Induced by Lentiviral Vector-Mediated Pigment Epithelium-Derived Factor Overexpression in Rat Acute Ischemic Myocardium. Hum Gene Ther 2019; 30:762-776. [PMID: 30734585 DOI: 10.1089/hum.2018.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, P.R. China
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
9
|
KARASEK D, SPURNA J, KUBICKOVA V, KRYSTYNIK O, CIBICKOVA L, SCHOVANEK J, GOLDMANNOVA D. Association of Pigment Epithelium Derived Factor With von Willebrand Factor and Plasminogen Activator Inhibitor 1 in Patients With Type 2 Diabetes. Physiol Res 2019; 68:409-418. [DOI: 10.33549/physiolres.934013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To compare circulating pigment epithelium derived factor (PEDF) levels in type 2 diabetes patients (T2D) with and without metabolic syndrome (MetS+/-) to healthy controls and assess PEDF association with plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF) as markers of endothelial dysfunction. Fifty T2D individuals and forty healthy controls were included. PEDF, PAI-1, vWF, anthropological parameters, lipids, and markers of insulin resistance were investigated in all subjects. Compared to controls only MetS+ diabetics had higher PEDF levels [14.2 (10.2-16.0) mg/l vs. 11.1 (8.6-14.4) mg/l; p<0.05]. PEDF significantly correlated: positively with body mass index (ρ=0.25), smoking (ρ=0.21), C-reactive protein (ρ=0.22), triglycerides (ρ=0.38), non-HDL-cholesterol (ρ=0.39), apolipoprotein B (ρ=0.38), fasting glucose (ρ=0.22), glycated hemoglobin (ρ=0.24), C-peptide (ρ=0.28), insulin (ρ=0.26); and negatively with HDL-cholesterol (ρ=-0.42) and apolipoprotein A1 (ρ=-0.27). Independent association of PEDF with vWF in T2DMetS- subjects was found. Significantly elevated PEDF in T2DMet+ patients and its association with adverse metabolic profile confirmed PEDF as a marker of insulin resistance. Negative independent association of PEDF with vWF in T2DMetS- patients may reveal its angio-protective role.
Collapse
Affiliation(s)
- D. KARASEK
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| | - J. SPURNA
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| | - V. KUBICKOVA
- Department of Clinical Biochemistry, University Hospital, Olomouc, Czech Republic
| | - O. KRYSTYNIK
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| | - L. CIBICKOVA
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| | - J. SCHOVANEK
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| | - D. GOLDMANNOVA
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital and Palacky University, Olomouc, Czech Republic
| |
Collapse
|
10
|
Yuan Y, Liu X, Miao H, Huang B, Liu Z, Chen J, Quan X, Zhu L, Dong H, Zhang Z. PEDF increases GLUT4-mediated glucose uptake in rat ischemic myocardium via PI3K/AKT pathway in a PEDFR-dependent manner. Int J Cardiol 2019; 283:136-143. [PMID: 30819588 DOI: 10.1016/j.ijcard.2019.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Targeted increase in glucose uptake of ischemic myocardium is a potential therapeutic strategy for myocardial ischemia. PEDF presents a profound moderating effect on glucose metabolism of cells, but its role is still controversial. Here, we try to demonstrate the direct effect of PEDF on glucose uptake in ischemic myocyte and to elucidate its underlying mechanism. METHODS AND RESULTS Lentivirus vectors carrying PEDF gene were delivered into the myocardium to locally overexpress PEDF in a myocardial ischemia/reperfusion rat model. PET imaging showed that PEDF local overexpression increased [18F]-FDG uptake of ischemic myocardium. In vitro, PEDF directly increased the glucose uptake in hypoxic cardiomyocytes. The expression of glucose transporter 4 (GLUT4) on plasma membrane of hypoxic cardiomyocytes was significantly upregulated by PEDF, but its total amount was not changed. The increased glucose uptake and cardioprotective effects induced by PEDF were blocked by the GLUT4 inhibitor indinavir. PEDF-mediated GLUT4 translocation and glucose uptake increase in hypoxic cardiomyocytes were prevented by phosphatidyl-inositol-3 kinase (PI3K) inhibitor or AKT inhibitor. The PEDF-mediated glucose uptake was also diminished when PEDF receptor (PEDFR) was downregulated or potent phospholipase A2 enzymatic activity was inhibited. CONCLUSIONS PEDF can increase glucose uptake in ischemic myocardium through a PEDFR-dependent mechanism, involving PI3K/AKT signaling and GLUT4 translocation.
Collapse
Affiliation(s)
- Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Jiali Chen
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Lidong Zhu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China..
| |
Collapse
|
11
|
Sun H, Cai J, Xu L, Liu J, Chen M, Zheng M, Wang L, Yang X. miR-483-3p regulates acute myocardial infarction by transcriptionally repressing insulin growth factor 1 expression. Mol Med Rep 2018; 17:4785-4790. [PMID: 29363719 DOI: 10.3892/mmr.2018.8456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the functional association between the expression of miR‑483‑3p and acute myocardial infarction (AMI) in patients and in vitro. H9c2 cells were incubated in a vacuum with 5% CO2, 5% H2 and 90% N2 for 2 h, which generated the AMI model in vitro. Reverse transcription‑quantitative polymerase chain reaction was used to measure miR‑483‑3p expression, and flow cytometry analysis and ELISA analysis were used to analyze apoptosis rate via caspase‑3 and caspase‑9 activity kits. B‑cell lymphoma 2 (Bcl‑2)/Bcl‑2‑associated X protein (Bax) and transcriptionally suppressed the protein expression of insulin growth factor 1 (IGF‑1) were analyze using western blot analysis. The results demonstrated that the expression of miR‑483‑3p in patients with AMI was increased when compared with the control group. In the in vitro model, the overexpression of miR‑483‑3p promoted apoptosis, increased caspase‑3 and caspase‑9 activity levels, induced the protein expression of Bcl‑2/Bax and IGF‑1. Picropodophyllotoxin, an IGF‑1 inhibitor, was administered to cells following the overexpression of miR‑483‑3p. Administration of picropodophyllotoxin suppressed IGF‑1 protein expression, promoted apoptosis, increased caspase‑3 and caspase‑9 activity levels, and induced the protein expression of Bax/Bcl‑2. The results of the present study revealed that miR‑483‑3p may regulate AMI via the IGF‑1 signaling pathway and may support the restoration of functional performance following AMI.
Collapse
Affiliation(s)
- Hao Sun
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jun Cai
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Li Xu
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jiamei Liu
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mulei Chen
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Meili Zheng
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lefeng Wang
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xinchun Yang
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
12
|
Wang Y, Wang Q, Yu W, Du H. Crocin Attenuates Oxidative Stress and Myocardial Infarction Injury in Rats. Int Heart J 2018; 59:387-393. [DOI: 10.1536/ihj.17-114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yongwang Wang
- Department of Anesthesiology, Tianjin First Center Hospital
| | - Qingping Wang
- Department of Anesthesiology, Tianjin First Center Hospital
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Center Hospital
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Center Hospital
| |
Collapse
|
13
|
Pigment epithelium-derived factor attenuates myocardial fibrosis via inhibiting Endothelial-to-Mesenchymal Transition in rats with acute myocardial infarction. Sci Rep 2017; 7:41932. [PMID: 28167820 PMCID: PMC5294634 DOI: 10.1038/srep41932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) plays a critical role in the pathogenesis and progression of interstitial and perivascular fibrosis after acute myocardial infarction (AMI). Pigment epithelium-derived factor (PEDF) is shown to be a new therapeutic target owing to its protective role in cardiovascular disease. In this study, we tested the hypothesis that PEDF is an endogenous inhibitor of EndMT and represented a novel mechanism for its protective effects against overactive cardiac fibrosis after AMI. Masson’s trichrome (MTC) staining and picrosirius red staining revealed decreased interstitial and perivascular fibrosis in rats overexpressing PEDF. The protective effect of PEDF against EndMT was confirmed by co-labeling of cells with the myofibroblast and endothelial cell markers. In the endothelial cells of microvessels in the ischemic myocardium, the inhibitory effect of PEDF against nuclear translocation of β-catenin was observed through confocal microscopic imaging. The correlation between antifibrotic effect of PEDF and inactivation of β-catenin was confirmed by co-transfecting cells with lentivirus carrying PEDF or PEDF RNAi and plasmids harboring β-catenin siRNA(r) or constitutive activation of mutant β-catenin. Taken together, these results establish a novel finding that PEDF could inhibit EndMT related cardiac fibrosis after AMI by a mechanism dependent on disruption of β-catenin activation and translocation.
Collapse
|
14
|
Kajikawa M, Maruhashi T, Iwamoto Y, Iwamoto A, Oda N, Kishimoto S, Matsui S, Aibara Y, Hidaka T, Kihara Y, Chayama K, Goto C, Noma K, Nakashima A, Matsui T, Yamagishi SI, Higashi Y. Circulating level of pigment epithelium-derived factor is associated with vascular function and structure: A cross-sectional study. Int J Cardiol 2016; 225:91-95. [PMID: 27716557 DOI: 10.1016/j.ijcard.2016.09.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the superfamily of serine protease inhibitors. It is thought that PEDF plays a protective role against atherosclerosis. Clinical studies have shown that serum levels of PEDF are increased in subjects with cardiovascular risk factors. The role of PEDF in cardiovascular disease is still controversial. The purpose of this study was to evaluate the associations between serum levels of PEDF and vascular function and structure. METHODS We measured serum levels of PEDF, assessed vascular function by measurements of flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation in the brachial artery, and measured brachial artery intima-media thickness (IMT) in 150 subjects who underwent health examinations. RESULTS AND CONCLUSIONS Univariate regression analysis revealed that serum level of PEDF was significantly correlated with body mass index, high-density lipoprotein cholesterol, glucose, FMD, nitroglycerine-induced vasodilation, and brachial artery IMT. Multivariate analysis revealed that serum levels of PEDF remained an independent predictor of nitroglycerine-induced vasodilation (β=-0.20, P=0.02) and brachial artery IMT (β=0.14, P=0.03) after adjustment of cardiovascular risk factors, while serum level of PEDF was not associated with FMD (β=-0.02, P=0.79). These findings suggest that PEDF may be a factor directly associated with atherosclerosis. The serum level of PEDF may be a new biochemical marker of atherosclerosis.
Collapse
Affiliation(s)
- Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumiko Iwamoto
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akimichi Iwamoto
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nozomu Oda
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Aibara
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Hidaka
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | - Chikara Goto
- Hiroshima International University, Hiroshima, Japan
| | - Kensuke Noma
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan; Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan; Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
15
|
Novel Biomarker MicroRNAs for Subtyping of Acute Coronary Syndrome: A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4618323. [PMID: 28044128 PMCID: PMC5156791 DOI: 10.1155/2016/4618323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Acute coronary syndrome (ACS) is a life-threatening disease that affects more than half a million people in United States. We currently lack molecular biomarkers to distinguish the unstable angina (UA) and acute myocardial infarction (AMI), which are the two subtypes of ACS. MicroRNAs play significant roles in biological processes and serve as good candidates for biomarkers. In this work, we collected microRNA datasets from the Gene Expression Omnibus database and identified specific microRNAs in different subtypes and universal microRNAs in all subtypes based on our novel network-based bioinformatics approach. These microRNAs were studied for ACS association by pathway enrichment analysis of their target genes. AMI and UA were associated with 27 and 26 microRNAs, respectively, nine of them were detected for both AMI and UA, and five from each subtype had been reported previously. The remaining 22 and 21 microRNAs are novel microRNA biomarkers for AMI and UA, respectively. The findings are then supported by pathway enrichment analysis of the targets of these microRNAs. These novel microRNAs deserve further validation and will be helpful for personalized ACS diagnosis.
Collapse
|
16
|
Lu P, Zhang YQ, Zhang H, Li YF, Wang XY, Xu H, Liu ZW, Li L, Dong HY, Zhang ZM. Pigment Epithelium-Derived Factor (PEDF) Improves Ischemic Cardiac Functional Reserve Through Decreasing Hypoxic Cardiomyocyte Contractility Through PEDF Receptor (PEDF-R). J Am Heart Assoc 2016; 5:e003179. [PMID: 27413044 PMCID: PMC5015364 DOI: 10.1161/jaha.115.003179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF), which belongs to the noninhibitory serpin family, has shown the ability to stimulate several physiological processes, such as antiangiogenesis, anti-inflammation, and antioxidation. In the present study, the effects of PEDF on contractility and calcium handling of rat ventricular myocytes were investigated. METHODS AND RESULTS Adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-lentivirus was delivered into the myocardium along and away from the infarction border to overexpress PEDF. Video edge detection was used to measure myocyte shortening in vitro. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator, Fura-2-acetoxymethyl ester. PEDF local overexpression enhanced cardiac functional reserve in AMI rats and reduced myocardial contracture bordering the infracted area. Exogenous PEDF treatment (10 nmol/L) caused a significant decrease in amplitudes of isoproterenol-stimulated myocyte shortening, Ca(2+) transients, and caffeine-evoked Ca(2+) transients in vitro. We then tested a potential role for PEDF receptor-mediated effects on upregulation of protein kinase C (PKC) and found evidence of signaling through the diacylglycerol/PKCα pathway. We also confirmed that pretreatment of cardiomyocytes with PEDF exhibited dephosphorylation of phospholamban at Ser(16), which could be attenuated with PKC inhibition. CONCLUSIONS The results suggest that PEDF depresses myocyte contractility by suppressing phosphorylation of phospholamban and Ca(2+) transients in a PKCα-dependent manner through its receptor, PEDF receptor, therefore improving cardiac functional reserve during AMI.
Collapse
Affiliation(s)
- Peng Lu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi-Qian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Feng Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yu Wang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Xu
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Wei Liu
- Research Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Yan Dong
- Research Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Ming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Zhuang W, Zhang H, Pan J, Li Z, Wei T, Cui H, Liu Z, Guan Q, Dong H, Zhang Z. PEDF and PEDF-derived peptide 44mer inhibit oxygen-glucose deprivation-induced oxidative stress through upregulating PPARγ via PEDF-R in H9c2 cells. Biochem Biophys Res Commun 2016; 472:482-8. [PMID: 26966066 DOI: 10.1016/j.bbrc.2016.02.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/30/2023]
Abstract
Pigment epithelial-derived factor (PEDF) is a glycoprotein with broad biological activities including inhibiting oxygen-glucose deprivation(OGD)-induced cardiomyocytes apoptosis through its anti-oxidative properties. PEDF derived peptide-44mer shows similar cytoprotective effect to PEDF. However, the molecular mechanisms mediating cardiomyocytes apoptosis have not been fully established. Here we found that PEDF and 44mer decreased the content of ROS. This content was abolished by either PEDF-R small interfering RNA (siRNA) or PPARγ antagonist. The level of Lysophosphatidic acid (LPA) and phospholipase A2 (PLA2) was observed as drawn from the ELISA assays. PEDF and 44mer sequentially induced PPARγ expression was observed both in qPCR and Western blot assays. The level of LPA and PLA2 and PPARγ expression increased by PEDF and 44mer was significantly attenuated by PEDF-R siRNA. However, PEDF and 44mer inhibited the H9c2 cells and cultured neonatal rat myocardial cells apoptosis rate. On the other hand, TUNEL assay and cleavage of procaspase-3 showed that PEDF-R siRNA or PPARγ antagonist increased the apoptosis again. We conclude that under OGD condition, PEDF and 44mer reduce H9c2 cells apoptosis and inhibit OGD-induced oxidative stress via its receptor PEDF-R and the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Wei Zhuang
- Research Facility Center for Morphology, 209 Tong shan Road, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Jiajun Pan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Zhimin Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Tengteng Wei
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Huazhu Cui
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Zhiwei Liu
- Research Facility Center for Morphology, 209 Tong shan Road, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Qiuhua Guan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Hongyan Dong
- Research Facility Center for Morphology, 209 Tong shan Road, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
18
|
Zha W, Su M, Huang M, Cai J, Du Q. Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:161-9. [PMID: 26739410 PMCID: PMC4713880 DOI: 10.4168/aair.2016.8.2.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a recently discovered antiangiogenesis protein. PEDF possesses powerful anti-inflammatory, antioxidative, antiangiogenic, and antifibrosis properties. It has been reported that PEDF can regulate vascular endothelial growth factor (VEGF) expression. This study aimed to evaluate whether recombinant PEDF protein could attenuate allergic airway inflammation and airway remodeling via the negative regulation of VEGF using a murine model of chronic ovalbumin (OVA)-induced asthma and BEAS-2B human bronchial epithelial cells. Methods In an in vivo experiment, mice sensitized with OVA were chronically airway challenged with aerosolized 1% OVA solution for 8 weeks. Treated mice were given injections of recombinant PEDF protein (50 or 100 µg/kg body weight) via the tail vein. In an in vitro experiment, we investigated the effects of recombinant PEDF protein on VEGF release levels in BEAS-2B cells stimulated with IL-1β. Results Recombinant PEDF protein significantly inhibited eosinophilic airway inflammation, airway hyperresponsiveness, and airway remodeling, including goblet cell hyperplasia, subepithelial collagen deposition, and airway smooth muscle hypertrophy. In addition, recombinant PEDF protein suppressed the enhanced expression of VEGF protein in lung tissue and bronchoalveolar lavage fluid (BALF) in OVA-challenged chronically allergic mice. In the in vitro experiment, VEGF expression was increased after IL-1β stimulation. Pretreatment with 50 and 100 ng/mL of recombinant PEDF protein significantly attenuated the increase in VEGF release levels in a concentration-dependent manner in BEAS-2B cells stimulated by IL-1β. Conclusions These results suggest that recombinant PEDF protein may abolish the development of characteristic features of chronic allergic asthma via VEGF suppression, providing a potential treatment option for chronic airway inflammation diseases such as asthma.
Collapse
Affiliation(s)
- Wangjian Zha
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei Su
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiankang Cai
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Du
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Abstract
OBJECTIVE Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis and an important target molecule for preventing the progression of atherosclerosis. However, the relationship between PEDF and coronary atherosclerosis has not been fully examined. The aim of the present study is to evaluate the effects of statins on serum PEDF levels and the association between PEDF and coronary atherosclerosis. PATIENTS AND METHODS Coronary atherosclerosis in nonculprit lesions in the vessel of patients undergoing a percutaneous coronary intervention was evaluated using virtual histology intravascular ultrasound in 99 patients during percutaneous coronary intervention and after 8 months of statin therapy. RESULTS Serum PEDF levels at baseline and at the 8-month follow-up did not differ. A significant decrease in the fibro-fatty component (-0.24 mm³/mm, P=0.0003) and increases in the necrotic core (0.13 mm³/mm, P=0.02) and dense calcium components (0.11 mm³/mm, P<0.0001) were observed during the 8-month statin therapy. On univariate regression analyses, serum PEDF levels (r=0.291, P=0.004) and unstable angina pectoris (r=0.203, P=0.04) showed significant positive correlations with the percentage change in necrotic core volume. Multivariate regression analysis showed that serum PEDF level was a significant independent predictor associated with necrotic core progression during statin therapy (β=0.218, P=0.04). CONCLUSION Statin therapy had no effects on serum PEDF levels. Serum PEDF was a useful biomarker for predicting necrotic core progression during statin therapy, and its levels could be elevated as a counter-regulatory response mechanism to protect against necrotic core progression.
Collapse
|
20
|
Wang X, Zhang Y, Lu P, Zhang H, Li Y, Dong H, Zhang Z. PEDF attenuates hypoxia-induced apoptosis and necrosis in H9c2 cells by inhibiting p53 mitochondrial translocation via PEDF-R. Biochem Biophys Res Commun 2015; 465:394-401. [PMID: 26277390 DOI: 10.1016/j.bbrc.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Pigment epithelial-derived factor (PEDF) is a multifunctional secreted glycoprotein, which could protect against hypoxia-induced cell death related to its anti-oxidative effect in cultured cardiomyocytes. However, the pathway mediating this cytoprotective process has not been fully established. Here we confirmed that PEDF bound to pigment epithelial-derived factor receptor (PEDF-R) expressed on the membrane of H9c2 cells. Under hypoxic condition, PEDF increased the ratio of MDM2:p53, so as to inhibited p53 mitochondrial translocation via PEDF-R. As a result, mitochondrial outer membrane permeabilization (MOMP) and mitochondrial permeability transition pore (MPTP) opening were inhibited, meanwhile cleaved caspase-3, PARP and the release of HMGB1 were reduced. Accordingly, apoptosis and necrosis were attenuated simultaneously. We conclude that PEDF-R mediates PEDF attenuates hypoxia-induced apoptosis and necrosis in H9c2 cells by inhibiting p53 mitochondrial translocation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China
| | - Peng Lu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China
| | - Yufeng Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai Road, Xuzhou 221006, Jiangsu Province, China.
| |
Collapse
|
21
|
PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis. Int J Mol Sci 2015; 16:5618-34. [PMID: 25768344 PMCID: PMC4394496 DOI: 10.3390/ijms16035618] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF’s effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size.
Collapse
|
22
|
Głodkowska-Mrówka E, Górska E, Ciurzyński M, Stelmaszczyk-Emmel A, Bienias P, Irzyk K, Siwicka M, Lipińska A, Ciepiela O, Pruszczyk P, Demkow U. Pro- and antiangiogenic markers in patients with pulmonary complications of systemic scleroderma. Respir Physiol Neurobiol 2014; 209:69-75. [PMID: 25447676 DOI: 10.1016/j.resp.2014.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/17/2014] [Accepted: 10/30/2014] [Indexed: 11/15/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by skin and internal organs fibrosis and concomitant vascular abnormalities. Although SSc is considered mainly fibrosing disease, underlying vascular pathology plays a fundamental role in its pathogenesis. We have focused on positive and negative serum markers of angiogenesis and fibrosis (pigment epithelium-derived factor [PEDF], vascular endothelial growth factor [VEGF], and soluble VEGF receptor [sVEGFR]), in progressive SSc patients at baseline and after follow-up in relation to cardiopulmonary complications (systemic hypertension [HT], pulmonary arterial hypertension [PAH] and pulmonary fibrosis [PF]). VEGF and PEDF but not sVEGFR were reciprocally regulated in SSc progression. Moreover, VEGF/PEDF ratio significantly increased during follow up suggesting that it might be used as a biomarker of disease progression. No correlation between the studied markers and cardiopulmonary complications was observed. In conclusion, VEGF and PEDF level, and the VEGF/PEDF ratio are significantly changed in the course of SSc progression and these markers can be used to assess SSc activity.
Collapse
Affiliation(s)
- E Głodkowska-Mrówka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - E Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - M Ciurzyński
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - A Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - P Bienias
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - K Irzyk
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - M Siwicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - A Lipińska
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - O Ciepiela
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - P Pruszczyk
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - U Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Matsui T, Nishino Y, Ojima A, Maeda S, Tahara N, Yamagishi SI. Pigment epithelium-derived factor improves metabolic derangements and ameliorates dysregulation of adipocytokines in obese type 2 diabetic rats. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1094-1103. [PMID: 24530621 DOI: 10.1016/j.ajpath.2013.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
Oxidative stress and inflammation in the adipose tissues contribute to the metabolic syndrome. Pigment epithelium-derived factor (PEDF) inhibits vascular inflammation through its anti-oxidative properties. However, it remains unclear whether PEDF could suppress adipocyte inflammation. We investigated the effects of long-term administration or suppression of PEDF on adipocyte inflammation and metabolic derangements in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes with insulin resistance. Circulating and adipose tissue PEDF levels were increased as OLETF rats became more obese and insulin resistant. Long-term administration of PEDF improves metabolic parameters, ameliorates dysregulation of adipocytokines, and suppresses NADPH oxidase-induced oxidative stress and macrophage infiltration in the adipose tissues of OLETF rats, whereas these variables are exacerbated by the knockdown of PEDF by administering siRNAs. Our study suggests that PEDF could improve metabolic derangements by suppressing the inflammatory and oxidative reactions in adipose tissues of OLETF rats. PEDF levels may be elevated as a countersystem against obesity-related metabolic derangements.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Ayako Ojima
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Sayaka Maeda
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nobuhiro Tahara
- Division of Cardio-Vascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| |
Collapse
|
24
|
Matsui T, Higashimoto Y, Yamagishi SI. Laminin receptor mediates anti-inflammatory and anti-thrombogenic effects of pigment epithelium-derived factor in myeloma cells. Biochem Biophys Res Commun 2014; 443:847-51. [DOI: 10.1016/j.bbrc.2013.12.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 01/10/2023]
|
25
|
Shin ES, Sorenson CM, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 306:L620-34. [PMID: 24318110 DOI: 10.1152/ajplung.00188.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with important roles in regulation of inflammation and angiogenesis. It is produced by various cell types, including endothelial cells (EC). However, the cell autonomous impact of PEDF on EC function needs further investigation. Lung EC prepared from PEDF-deficient (PEDF-/-) mice were more migratory and failed to undergo capillary morphogenesis in Matrigel compared with wild type (PEDF+/+) EC. Although no significant differences were observed in the rates of apoptosis in PEDF-/- EC compared with PEDF+/+ cells under basal or stress conditions, PEDF-/- EC proliferated at a slower rate. PEDF-/- EC also expressed increased levels of proinflammatory markers, including vascular endothelial growth factor, inducible nitric oxide synthase, vascular cell adhesion molecule-1, as well as altered cellular junctional organization, and nuclear localization of β-catenin. The PEDF-/- EC were also more adhesive, expressed decreased levels of thrombospondin-2, tenascin-C, and osteopontin, and increased fibronectin. Furthermore, we showed lungs from PEDF-/- mice exhibited increased expression of macrophage marker F4/80, along with increased thickness of the vascular walls, consistent with a proinflammatory phenotype. Together, our data suggest that the PEDF expression makes significant contribution to modulation of the inflammatory and angiogenic phenotype of the lung endothelium.
Collapse
Affiliation(s)
- Eui Seok Shin
- Dept. of Ophthalmology and Visual Sciences, Univ. of Wisconsin, 600 Highland Ave., K6/458 CSC, Madison, WI 53792-4673.
| | | | | |
Collapse
|
26
|
Liu J, Wang S, Shi J, Guo Y, Liu J, Tao T, Zhu P. The association study of plasma levels of pigment epithelium-derived factor with acute coronary syndrome in the chinese han population. Cardiology 2013; 127:31-7. [PMID: 24192856 DOI: 10.1159/000354873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022]
Abstract
OBJECTS To investigate the relationship between plasma levels of pigment epithelium-derived factor (PEDF) and acute coronary syndrome (ACS) in the Chinese Han population. METHODS Plasma PEDF levels were measured in 200 consecutive ACS patients and 160 age- and sex-matched healthy control subjects. Logistic regression analysis was performed to determine whether PEDF was an independently protective factor against ACS. All ACS patients were followed up for 6 months and the short-term major adverse cardiovascular events (MACE) were obtained: cardiac death and recurrent angina. RESULTS The ACS patients showed notably lower plasma PEDF levels relative to the control group (7.31 ± 2.21 vs. 8.44 ± 2.13 μg/ml, respectively, p = 0.001). Logistic regression analysis revealed that PEDF had a significant protective effect against ACS (OR = 0.76, 95% CI 0.623-0.935, p = 0.01). After 6 months of follow-up, we found that the mean PEDF concentration of the patients with short-term MACE was lower than the patients without (6.05 ± 2.18 vs. 7.52 ± 2.07 µg/ml, p = 0.031). The Kaplan-Meier survival curves suggested that patients with plasma PEDF levels <7.00 µg/ml showed a lower survival trend than those in the higher group, but the difference was not significant (p = 0.477). CONCLUSIONS Our study indicates that plasma PEDF levels are significantly lower in ACS patients than in controls, and lower PEDF levels are further associated with adverse cardiac outcomes after ACS.
Collapse
Affiliation(s)
- Jie Liu
- Cardiovascular Department, Chinese PLA General Hospital, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Matsui T, Higashimoto Y, Taira J, Yamagishi SI. Pigment epithelium-derived factor (PEDF) binds to caveolin-1 and inhibits the pro-inflammatory effects of caveolin-1 in endothelial cells. Biochem Biophys Res Commun 2013; 441:405-10. [PMID: 24161393 DOI: 10.1016/j.bbrc.2013.10.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/05/2023]
Abstract
Pigment epithelium-derived factor (PEDF) exerts atheroprotective effects both in cell culture and animal models through its anti-oxidative and anti-inflammatory properties. Caveolin-1 (Cav), a major protein component of caveolae in endothelial cells (ECs), plays a role in the progression of atherosclerosis. However, effects of PEDF on Cav-exposed ECs remain unknown. In this study, we examined whether and how PEDF could inhibit the Cav-induced inflammatory and thrombogenic reactions in human umbilical vein ECs (HUVECs). Surface plasmon resonance revealed that PEDF bound to Cav at the dissociation constant of 7.36×10(-7) M. Further, one of the major Cav-interacting proteins in human serum was identified as PEDF by peptide mass fingerprinting analysis using BIAcore 1000 combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Exogenously added Cav was taken up into the membrane fraction of HUVECs and dose-dependently increased monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1) and plasminogen activator inhibitor-1 (PAI-1) mRNA levels, all of which were blocked by the simultaneous treatment with 10nM PEDF. Small interfering RNAs directed against Cav decreased endogenous Cav levels and suppressed gene expression of MCP-1, VCAM-1 and PAI-1 in HUVECs. This study indicates that PEDF binds to Cav and could block the inflammatory and thrombogenic reactions in Cav-exposed HUVECs. Our present study suggests that atheroprotective effects of PEDF might be partly ascribed to its Cav-interacting properties.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | | | | | | |
Collapse
|
28
|
Khanna D, Banewal L, Mehan S. Spices, Fruits, Nuts and Vitamins: Preventive Interventions for Myocardial Infarction. ACTA ACUST UNITED AC 2013. [DOI: 10.5567/pharmacologia.2013.553.570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Rega-Kaun G, Kaun C, Wojta J. More than a simple storage organ: adipose tissue as a source of adipokines involved in cardiovascular disease. Thromb Haemost 2013; 110:641-50. [PMID: 23846791 DOI: 10.1160/th13-03-0212] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/19/2013] [Indexed: 01/04/2023]
Abstract
Overweight and obesity in many countries have developed into a serious health problem by themselves and by their impact on other pathologies such as insulin resistance, type 2 diabetes, hypertension, heart disease and cancer. The modulation of these diseases by adipose tissue-derived biomolecules, so-called adipokines, could be the key to differentiate between metabolically healthy and unhealthy obesity. This review will discuss the pathophysiological role of selected adipokines, primarily focusing on cardiovascular diseases. Furthermore, we will highlight possible therapeutic approaches, which target these biomolecules.
Collapse
Affiliation(s)
- Gersina Rega-Kaun
- Johann Wojta, Department of Internal Medicine II, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria, Tel.: +43 1 40400 73500, Fax: +43 1 40400 73586, E-mail:
| | | | | |
Collapse
|
30
|
Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder? Expert Opin Drug Discov 2013; 8:769-92. [PMID: 23642051 DOI: 10.1517/17460441.2013.794781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pigment epithelium-derived factor (PEDF) was discovered as a neurotrophic factor secreted by retinal pigment epithelial cells. A decade later, it re-emerged as a powerful angiogenesis inhibitor guarding ocular function. Since then, significant advances were made identifying PEDF's mechanisms, targets and biomedical applications. AREAS COVERED The authors review several methodologies that have generated significant new information about the potential of PEDF as a drug. Furthermore, the authors review and discuss mechanistic and structure-function analyses combined with the functional mapping of active fragments, which have yielded several short bioactive PEDF peptides. Additionally, the authors present functional studies in knockout animals and human correlates that have provided important information about conditions amenable to PEDF-based therapies. EXPERT OPINION Through its four known receptors, PEDF causes a wide range of cellular events vitally important for the organism, which include survival and differentiation, migration and invasion, lipid metabolism and stem cell maintenance. These processes are deregulated in multiple pathological conditions, including cancer, metabolic and cardiovascular disease. PEDF has been successfully used in countless preclinical models of these conditions and human correlates suggest a wide utility of PEDF-based drugs. The most significant clinical application of PEDF, to date, is its potential therapeutic use for age-related macular degeneration. Moreover, PEDF-based gene therapy has advanced to early stage clinical trials. PEDF active fragments have been mapped and used to design short peptide mimetics conferring distinct functions of PEDF, which may address specific clinical problems and become prototype drugs.
Collapse
Affiliation(s)
- Susan E Craword
- St. Louis University School of Medicine, Department of Pathology, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
31
|
Serum pigment epithelium-derived factor levels are independently correlated with the presence of coronary artery disease. Cardiovasc Diabetol 2013; 12:56. [PMID: 23547730 PMCID: PMC3626632 DOI: 10.1186/1475-2840-12-56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022] Open
Abstract
Background Pigment epithelium-derived factor (PEDF) has been proved to be closely correlated with metabolic syndrome (MetS) and its components that are all risk factors of cardiovascular disease and may play a protective role against vascular injury and atherosclerosis. The present study was designed to investigate the relationship between serum PEDF and coronary artery disease (CAD). Methods A total of 312 consecutive in-patients (including 228 with CAD and 197 with MetS) who underwent coronary angiography were enrolled. Serum PEDF was measured by sandwich enzyme immunoassay and used to carry out multivariate stepwise regression analysis to assess correlation with patient demographic and clinical parameters. Multiple logistic regression analysis was performed to identify factors independently correlated with CAD. Results Patients with MetS had significantly higher levels of serum PEDF than non-MetS subjects (11.1(8.2, 14.2) vs. 10.1(7.6, 12.4) μg/mL; P < 0.05). Patients with CAD also had significantly higher serum PEDF than non-CAD subjects (11.0(8.1, 14.2) vs. 10.3(8.1, 12.8) μg/mL; P < 0.05). Triglyceride (TG), C-reactive protein (CRP), estimated glomerular filtration rate (eGFR), and hypoglycemic therapy were independently correlated with serum PEDF levels, and serum PEDF was independently positively correlated with CAD. Conclusions Serum PEDF levels are independently positively associated with CAD in a Chinese population. Elevated PEDF may act as a protective response against vascular damage and subsequent CAD.
Collapse
|
32
|
Nelius T, Samathanam C, Martinez-Marin D, Gaines N, Stevens J, Hickson J, de Riese W, Filleur S. Positive correlation between PEDF expression levels and macrophage density in the human prostate. Prostate 2013; 73:549-61. [PMID: 23038613 PMCID: PMC3600115 DOI: 10.1002/pros.22595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/04/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND In this study, we investigated the capacity of pigment epithelium-derived factor (PEDF) to modulate the recruitment and the differentiation of monocytes/macrophages both in vitro and in human prostate. METHODS Using Boyden chambers, we assessed PEDF effect on the migration of monocytes and chemically activated RAW 264.7 macrophages. Normal, prostatitis, and prostate cancer specimens were retrospectively selected and examined by immunohistochemistry for PEDF expression and infiltration of immune CD68 + macrophagic cells. PEDF expression and macrophage density were then correlated with each other and clinicopathological parameters. M1 and M2 differentiation markers were quantified by qRT-PCR, Western blotting, and ELISA. RESULTS In chemotaxis, PEDF induced the migration of monocytes/macrophages. In immunohistochemistry, macrophages were markedly increased in prostatitis and malignant compared to normal tissues. PEDF was expressed at variable levels in the stroma and epithelium. PEDF mRNA was down-regulated in both prostate cancer and prostatitis compared to normal tissues. In correlation studies, macrophage density and PEDF expression were respectively positively and negatively associated with prostate size. Most importantly, PEDF expression positively correlated with macrophage density. Finally, PEDF stimulated the expression of iNOS, IL12, and TNFα; and inhibited IL10 and arginase 1 in mouse and human macrophages confirming a M1-type differentiation. CONCLUSIONS Our data demonstrate that PEDF acts directly on monocytes/macrophages by inducing their migration and differentiation into M1-type cells. These findings suggest a possible role of macrophages in PEDF anti-tumor properties and may support further development of PEDF-based anti-cancer therapy.
Collapse
Affiliation(s)
- Thomas Nelius
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Christina Samathanam
- The University of Texas Health Science Center at Houston, Medical School, Department of Pathology and Laboratory Medicine, Houston-TX
| | | | - Natalie Gaines
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Jessica Stevens
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Johnny Hickson
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Werner de Riese
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Stéphanie Filleur
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
- Texas Tech University Health Sciences Center, Department of Immunology and Molecular Microbiology, Lubbock-TX
| |
Collapse
|
33
|
Hyogo H, Yamagishi SI, Maeda S, Kimura Y, Ishitobi T, Chayama K. Serum levels of pigment epithelium-derived factor (PEDF) are independently associated with procollagen III N-terminal peptide levels in patients with nonalcoholic fatty liver disease. Clin Biochem 2012; 45:1554-7. [PMID: 22884488 DOI: 10.1016/j.clinbiochem.2012.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the superfamily of serine protease inhibitors with complex anti-oxidative, anti-fibrotic, and anti-inflammatory properties, thus being involved in cardiometabolic disorders. Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome as well. However, the pathophysiological role of PEDF in NAFLD remains largely unknown. We studied here the relationship between serum PEDF levels and various clinical markers of NAFLD in humans. DESIGN AND METHODS The study involved 194 biopsy-proven NAFLD patients (102 male and 92 female) with a mean age of 51.3±13.8 years. We examined which anthropometric, metabolic and inflammatory variables, and liver steatosis and fibrosis markers are independently associated with serum levels of PEDF. RESULTS Mean serum levels of PEDF were 16.4±5.7 μg/mL. Univariate analysis revealed that age (inversely), male, body mass index, waist circumference, numbers of white blood cells and platelets, aspartate aminotransferase, alanine aminotransferase, fasting plasma glucose, glycated hemoglobin, uric acid, procollagen type III N-terminal peptide (P-III-P), subcutaneous fat areas, visceral fat areas and liver to spleen density ratio in computed tomography, the presence of diabetes and medication for hyperlipidemia were significantly associated with serum levels of PEDF. In multiple stepwise regression analysis, age (p<0.01, inversely), male (p<0.05), waist circumference (p<0.01), white blood cell number (p<0.05), P-III-P (p<0.05), and the presence of diabetes (p<0.05) and medication for hyperlipidemia (p<0.01), were independently correlated to serum levels of PEDF (R(2)=0.285). CONCLUSIONS The present study reveals that serum levels of PEDF are independently associated with P-III-P levels, suggesting that PEDF level is a novel biomarker of liver fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Hideyuki Hyogo
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Yamagishi SI, Maeda S, Ueda S, Ishibashi Y, Matsui T. Serum pigment epithelium-derived factor levels are independently associated with decreased number of circulating endothelial progenitor cells in healthy non-smokers. Int J Cardiol 2012; 158:310-2. [PMID: 22608273 DOI: 10.1016/j.ijcard.2012.04.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 01/14/2023]
|
35
|
Yan KP, Guo Y, Xing Z, Huang X, Dai S, Duan M, Sun X, Huang W, Peng W. Dan-Shen-Yin protects the heart against inflammation and oxidative stress induced by acute ischemic myocardial injury in rats. Exp Ther Med 2011; 3:314-318. [PMID: 22969888 DOI: 10.3892/etm.2011.404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/16/2011] [Indexed: 01/01/2023] Open
Abstract
Dan-Shen-Yin (DSY) is a well-known traditional Chinese formula which is widely used in clinical practice for the treatment of coronary heart disease (CHD) and has produced a favorable effect in China. The present study was designed to examine whether or not acute oral DSY can protect the heart against myocardial infarction in acute myocardial ischemic rats. If so, we would then investigate the anti-inflammatory and anti-oxidant mechanisms involved. The left anterior descending coronary artery was occluded to induce myocardial ischemia in the hearts of Sprague-Dawley rats. At the end of the 3-h ischemic period (or 24 h for infarction size), we measured the myocardial infarction size, inflammatory factors and the activities of anti-oxidative enzymes. DSY reduced the infarction size and the serum levels of C-reactive protein, interleukin-6, tumour necrosis factor-α and malondialdehyde and increased the activities of superoxide dismutase and the serum levels of glutathione. The results show that DSY exerts significant cardioprotective effects against acute ischemic myocardial injury in rats, possibly through its anti-inflammatory and anti-oxidant properties, and may thus be used as a potential therapeutic reagent for the treatment of CHD.
Collapse
Affiliation(s)
- Kui-Po Yan
- Institute of Integrated Traditional Medicine and Western Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schmitz JC, Protiva P, Gattu AK, Utsumi T, Iwakiri Y, Neto AG, Quinn M, Cornwell ML, Fitchev P, Lugea A, Crawford SE, Chung C. Pigment epithelium-derived factor regulates early pancreatic fibrotic responses and suppresses the profibrotic cytokine thrombospondin-1. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2990-9. [PMID: 21964188 DOI: 10.1016/j.ajpath.2011.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/01/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is important for maintaining the normal extracellular matrix. We hypothesized that the initiation of pancreatic fibrosis is dependent on the loss of PEDF. Pancreatic PEDF expression was assessed in wild-type mice fed either a control or ethanol diet using an intragastric feeding model. Pancreatitis responses were elicited with either a single episode or a repetitive cerulein-induced (50 μg/kg, 6 hourly i.p. injections) protocol in wild-type and PEDF-null mice. Quantitative real-time PCR and immunoblotting were performed to assess fibrogenic responses. In wild-type animals, PEDF expression increased with pancreatitis and was more pronounced in mice fed ethanol. Compared with wild-type mice, α-smooth muscle actin staining and expression levels of fibrogenic markers (eg, transforming growth factor-β1, platelet-derived growth factor, collagen I, and thrombospondin-1) were higher in PEDF-null mice at baseline. Sirius red staining revealed more fibrosis in PEDF-null versus wild-type pancreas 1 week after pancreatitis. Differences in tissue fibrosis resolved with longer recovery periods. PEDF overexpression suppressed thrombospondin-1 levels in vitro. Ethanol feeding and experimental pancreatitis increased PEDF expression in wild-type mice. PEDF-null mice, however, demonstrated enhanced early fibrotic responses compared with wild-type mice with pancreatitis. These findings indicate that PEDF acts as a compensatory antifibrotic cytokine in pancreatitis.
Collapse
Affiliation(s)
- John C Schmitz
- Section of Digestive Diseases, VA Connecticut Healthcare System, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tahara N, Yamagishi SI, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Mohar D, Ishibashi M, Hayabuchi N, Imaizumi T. Serum level of pigment epithelium-derived factor is a marker of atherosclerosis in humans. Atherosclerosis 2011; 219:311-5. [PMID: 21733518 DOI: 10.1016/j.atherosclerosis.2011.06.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Pigment epithelium-derived factor (PEDF) could play a protective role against atherosclerosis. However, there is no clinical study to examine the relationship between serum level of PEDF and atherosclerosis in humans. METHODS/RESULTS The study involved 317 consecutive outpatients in Kurume University Hospital (220 male and 97 female) with a mean age of 62.1±9.1. We examined whether serum level of PEDF were independently associated with vascular inflammation evaluated by [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) and intima-media thickness (IMT) in carotid artery in humans. Carotid [(18)F]-FDG uptake, an index of vascular inflammation within the atherosclerotic plaques, was measured as standardized uptake value (SUV). Mean serum PEDF level, carotid SUV and IMT values were 13.5±1.1 μg/mL, 1.34±0.19, and 0.71±0.15 mm, respectively. In multiple stepwise regression analysis, estimated glomerular filtration rate (p<0.001), males (p<0.001), homeostasis model assessment of insulin resistance index (p<0.05), heart rate (p<0.05), triglycerides (p<0.05), carotid IMT (p<0.05), waist circumference (p<0.05) and carotid SUV (p<0.05) were independently correlated to PEDF level (R(2)=0.332). CONCLUSION The present study reveals that serum level of PEDF is independently associated with vascular inflammation and IMT, thus suggesting that PEDF level is a novel biomarker that could reflect atherosclerosis in humans.
Collapse
Affiliation(s)
- Nobuhiro Tahara
- Department of Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|