1
|
Kanwal R, Esposito JE, Jawed B, Zakir SK, Pulcini R, Martinotti R, Botteghi M, Gaudio F, Martinotti S, Toniato E. Exploring the Role of Epithelial-Mesenchymal Transcriptional Factors Involved in Hematological Malignancy and Solid Tumors: A Systematic Review. Cancers (Basel) 2025; 17:529. [PMID: 39941895 PMCID: PMC11817253 DOI: 10.3390/cancers17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The epithelial mesenchymal transition (EMT) is a biological process in which epithelial cells lose their polarity and adhesion characteristics, and adopt a mesenchymal phenotype. While the EMT naturally occurs during tissue fibrosis, wound healing, and embryonic development, it can be exploited by cancer cells and is strongly associated with cancer stem cell formation, tissue invasiveness, apoptosis, and therapy resistance. Transcription factors (TFs) such as SNAIL, ZEB, and TWIST play a pivotal role in driving the EMT. This systematic review aims to assess the impact of EMT-TFs on hematological malignancy and solid tumors. METHODS English-language literature published between 2010 and 2024 was systematically reviewed, utilizing databases such as PubMed and Google Scholar. RESULTS A total of 3250 studies were extracted. Of these, 92 publications meeting the inclusion criteria were analyzed to elucidate the role of EMT-TFs in cancer. The results demonstrated that the EMT-TFs play a critical role in both hematological and solid tumor development and progression. They promote invasive, migratory, and metastatic properties in these tumors, and contribute to therapeutic challenges by enhancing chemoresistance. A strong correlation between EMT-TFs and poor overall survival has been identified. CONCLUSIONS Our research concluded that EMT-TFs may serve as important predictive and prognostic factors, as well as potential therapeutic targets to mitigate cancer progression.
Collapse
Affiliation(s)
- Rimsha Kanwal
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Jessica Elisabetta Esposito
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Bilal Jawed
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Syed Khuram Zakir
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Riccardo Pulcini
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Riccardo Martinotti
- Residency Program in Clinical Oncology, Faculty of Medicine, Umberto I University Hospital, University of Rome “La Sapienza”, 00185 Rome, Italy;
| | - Matteo Botteghi
- Experimental Pathology Research Group, Department of Clinical and Molecular Sciences, Universita Politecnica delle Marche, 60126 Ancona, Italy;
| | - Francesco Gaudio
- Unit of Haematology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Stefano Martinotti
- Unit of Clinical Pathology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Elena Toniato
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| |
Collapse
|
2
|
Jiang H. Prostate Cancer Bone Metastasis: Molecular Mechanisms of Tumor and Bone Microenvironment. Cancer Manag Res 2025; 17:219-237. [PMID: 39912095 PMCID: PMC11796448 DOI: 10.2147/cmar.s495169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Prostate cancer is prevalent among men aged 65 and older. Bone metastasis occurs in up to 90% of advanced prostate cancer patients, metastatic prostate cancer is generally considered a non-curative condition which can impact quality of life. The tumor microenvironment, comprising diverse cellular and non-cellular elements, interacts with prostate cancer cells to affect tumor growth and bone metastasis. Within the bone microenvironment, different cell types, including osteoblasts, osteoclasts, adipocytes, endothelial cells, hematopoietic stem cells, and immune cells, engage with tumor cells. Some cells alter tumor behavior, while others are impacted or overpowered by tumor cells, leading to different phases of tumor cell movement, dormancy, latency, resistance to treatment, and advancement to visible bone metastasis. This review summarizes recent research on the tumor microenvironment and bone microenvironment in prostate cancer bone metastasis, exploring underlying mechanisms and the potential value of targeting these environments for treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
3
|
Rodríguez-Sarmiento DY, Rondón-Villarreal P, Scarpelli-Pereira PH, Bouvier M. Comprehensive Analysis of Kisspeptin Signaling: Effects on Cellular Dynamics in Cervical Cancer. Biomolecules 2024; 14:923. [PMID: 39199311 PMCID: PMC11352469 DOI: 10.3390/biom14080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024] Open
Abstract
Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic-pituitary-gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects through its interaction with the G protein-coupled receptor, kisspeptin receptor. This interaction has been implicated in modulating cellular processes such as proliferation and metastasis, making it a potential target for therapeutic intervention. Our study initially screened ten kisspeptin-10 analogs through cytotoxic effects of kisspeptin-10 (KP10) and its analogs in several cancer types, including cervical, prostate, breast, and gastric cancers, with a particular focus on cervical cancer, where the most profound effects were observed. Further exploration using kinase array assays revealed that these analogs specifically alter key kinases involved in cancer progression. Migration assays demonstrated a substantial decrease in cell motility, and Bioluminescence Resonance Energy Transfer assays confirmed these analogs' strong interactions with the kisspeptin receptor. Overall, our results indicate that these KP10 analogs not only hinder cervical cancer cell proliferation but also curtail migration through targeted modulation of kinase signaling, suggesting their potential as therapeutic agents in managing cervical cancer progression. This comprehensive approach underscores the therapeutic promise of exploiting kisspeptin signaling in cancer treatment strategies.
Collapse
Affiliation(s)
| | - Paola Rondón-Villarreal
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Bucaramanga 680003, Colombia;
| | - Pedro Henrique Scarpelli-Pereira
- Department of Biochemistry, Institute for Research in Immunology and Cancer (IRIC), Université de Montreal, Montreal, QC H3T 1J4, Canada; (P.H.S.-P.); (M.B.)
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer (IRIC), Université de Montreal, Montreal, QC H3T 1J4, Canada; (P.H.S.-P.); (M.B.)
| |
Collapse
|
4
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
5
|
Valizadeh M, Babaei E, Sharifi R, Yazdanbod A. Restoration of miR-650 leads to down-regulation of KISS1, a possible route involved in overcoming 5-FU resistance and induction of apoptosis in CRC cells in-vitro. Mol Biol Rep 2023; 50:6591-6599. [PMID: 37341919 DOI: 10.1007/s11033-023-08451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer-related deaths worldwide. We aimed to determine the role of miR-650 in CRC pathogenesis. METHODS In this study, we examined the expression of miR-650 and KISS1 in 80 CRC patients who either received or did not receive chemo agents. For this aim, we assessed the miR-650 and KISS1 expression levels in 80 CRC tissues, 30 of which had no history of chemotherapy. The effect of miR-650 and 5-FU on KISS1 expression was measured using qPCR and Western blotting. Also, the 5- FU effect on miR-650 expression in the CRC cell lines was measured by qRT-PCR. Next, MTT assay and Flowcytometry assays were conducted to determine the role of miR-650 in cell viability and apoptosis. RESULTS The results showed that miR-650 was down-regulated in CRC tissues. However, patients who received 5-FU before surgery showed increased expression of miR-650. The results for KISS1 were insignificant while administering 5-FU to patients preoperatively increased its expression. In-vitro studies showed that 5-FU led to the up-regulation of miR-650 in the SW480 CRC cell line. Furthermore, the administration of miR-650 and 5-FU downregulated KISS1, especially when combined. Moreover, miR-650 with 5-FU significantly reduced cell viability in CRC cell lines by inducing apoptosis. CONCLUSIONS These results indicate that miR-650 has a tumor suppressive function, overcoming 5-FU chemoresistance in CRC, and induces apoptosis probably by alleviating KISS1. These results suggest that miR-650 is a potential contributor to CRC pathogenesis.
Collapse
Affiliation(s)
- Mehdi Valizadeh
- Department of Molecular Genetics, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Esmaeil Babaei
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Rasoul Sharifi
- Department of Biology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Abbas Yazdanbod
- Department of Internal Medicine, School of Medicine and Allied Medical Sciences, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Duan H, Ding X, Luo H. KISS-1, Mediated by Promoter Methylation, Suppresses Esophageal Squamous Cell Carcinoma Metastasis via MMP2/9/MAPK Axis. Dig Dis Sci 2022; 67:4780-4796. [PMID: 34993679 DOI: 10.1007/s10620-021-07335-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS KISS-1 is an established tumor suppressor that inhibits metastases in various malignancies. However, little is known regarding its role in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to identify the possible mechanisms of KISS-1 in ESCC metastasis. METHODS The expression levels of KISS-1 mRNA and protein in ESCC samples and cell lines were analyzed by qRT-PCR, IHC, and western blotting. Bisulfite sequencing PCR (BSP) and methylation-specific PCR (MSP) were used to analyze the methylation pattern of KISS-1 promoter in ESCC cells with or without 5-Aza-dC treatment. The role of KISS-1 in the progression and metastasis of ESCC was analyzed through in vitro functional assays. RESULTS KISS-1 mRNA and protein were markedly downregulated in ESCC tissues and cell lines compared to the respective controls. Hypermethylation of KISS-1 promoter correlated to its lower expression levels in ESCC, and KISS-1 demethylation inhibited tumor progression. Ectopic KISS-1 overexpression inhibited tumor cell metastasis in vitro. In addition, KISS-1 overexpression downregulated the matrix metalloproteinase 2 and 9 (MMP2 and 9) and inhibited epithelial-mesenchymal transition (EMT). Finally, KISS-1 downregulated phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) and phosphorylated p38 mitogen-activated protein kinase (MAPK) without affecting their total expression levels in the ESCC cells. MAPK/ERK and p38 MAPK agonists reversed the suppressive effects of KISS-1. CONCLUSIONS The hypermethylation of KISS-1 promoter partly contributed to its downregulation in ESCC. KISS-1 inhibits the metastasis of ESCC cells by targeting the MMP2/9/ERK/p38 MAPK axis.
Collapse
Affiliation(s)
- Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiang Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Kim CW, Lee HK, Nam MW, Lee G, Choi KC. The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. Life Sci 2022; 310:121009. [PMID: 36181862 DOI: 10.1016/j.lfs.2022.121009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Metastatic prostate cancers have a high mortality rate. KiSS1 was originally identified as a metastasis suppressor gene in metastatic melanoma and breast cancer, but its role in prostate cancer has been contradictory. This study was therefore undertaken to investigate the effects of KiSS1 overexpression on the growth and migration of human metastatic prostate cancer cells. We first tested the effect of KiSS1 overexpression on the growth and migration of DU145 human metastatic prostate cancer cells in vitro. DU145 cells were infected with the culture medium of 293T cells, which produce lentivirus particles containing KiSS1. A 2.5-fold increase in proliferation of KiSS1-overexpressing cancer cells was observed, and these cells formed tumor spheroids about 3 times larger than the vector control group. qPCR and immunoblotting revealed the association between increased cell growth and regulation of the PI3K/Akt and cell cycle genes, and also that increases in β-catenin and CD133 contribute to tumor aggregation. KiSS1 overexpression resulted in upregulation of the β-arrestin1/2 and Raf-MEK-ERK-NF-κB pathways via KiSS1R. Moreover, the migration and invasion of KiSS1-overexpressing cells were determined to be faster than the control group, along with 1.6-fold increased metastatic colonization of the KiSS1-overexpressing cancer cells. These were associated to the regulation of EMT gene expressions, such as E-cadherin and N-cadherin, and the upregulation of MMP9. In a xenograft mouse model inoculated with DU145 cells infected GFP or KiSS1 via a lentiviral vector, KiSS1 statistically significantly increased the tumor growth, with upregulation of PCNA and Ki-67 in the tumor tissues. In addition, KiSS1 increased the angiogenic capacity by upregulating VEGF-A and CD31, both in vitro and in vivo. Taken together, our results indicate that KiSS1 not only induces prostate cancer proliferation, but also promotes metastasis by increasing the migration, invasion, and angiogenesis of malignant cells.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
8
|
Lin Y, Sidthipong K, Ma J, Koide N, Umezawa K, Kubota T. The designed NF-κB inhibitor, DHMEQ, inhibits KISS1R-mediated invasion and increases drug-sensitivity in mouse plasmacytoma SP2/0 cells. Exp Ther Med 2021; 22:1092. [PMID: 34504546 PMCID: PMC8383752 DOI: 10.3892/etm.2021.10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoma is one of the most difficult types of leukemia to treat, and it often invades the bone down to the marrow resulting in the development of multiple myeloma. NF-κB is often constitutively activated, and promotes metastasis and drug resistance in neoplastic cells. The present study assessed the cellular anticancer activity of an NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on mouse plasmacytoma SP2/0 cells. Cellular invasion was measured by Matrigel chamber assay, and apoptosis was assessed by detecting caspase-3 cleavage and by flow cytometric analysis with Annexin V. DHMEQ inhibited constitutively activated NF-κB at nontoxic concentrations. DHMEQ was also shown to inhibit cellular invasion of SP2/0 cells, as well as human myeloma KMS-11 and RPMI-8226 cells. The metastasis PCR array indicated that DHMEQ induced a decrease in KISS1 receptor (KISS1R) expression in SP2/0 cells. Knockdown of KISS1R by small interfering RNA suppressed cellular invasion, suggesting that KISS1R may serve an essential role in the invasion of SP2/0 cells. Furthermore, DHMEQ enhanced cytotoxicity of the anticancer agent melphalan in SP2/0 cells. Notably, DHMEQ inhibited the expression of NF-κB-dependent anti-apoptotic proteins, such as Bcl-XL, FLIP, and Bfl-1. In conclusion, inhibition of constitutively activated NF-κB by DHMEQ may be useful for future anti-metastatic and anticancer strategies for the treatment of plasmacytoma.
Collapse
Affiliation(s)
- Yinzhi Lin
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.,Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kulrawee Sidthipong
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Jun Ma
- Department of Research and Development, Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen, Guangdong 518107, P.R. China
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Tetsuo Kubota
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo 113-8510, Japan
| |
Collapse
|
9
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
10
|
Reduced Kiss‑1 expression is associated with clinical aggressive feature of gastric cancer patients and promotes migration and invasion in gastric cancer cells. Oncol Rep 2020; 44:1149-1157. [PMID: 32705229 PMCID: PMC7388581 DOI: 10.3892/or.2020.7676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) causes high morbidity and mortality in patients largely due to its invasion and metastasis. Kiss‑1 has been shown to be a metastasis suppressor in various malignancies. However, its clinical significance and biological functions in GC have not been thoroughly investigated. The present study investigated the association between Kiss‑1 expression and its methylation status and clinicopathological features in GC. Kiss‑1 expression was reduced in GC and its low expression was associated with poor histological grade, lymph node metastasis and TNM III+IV stage. Kiss‑1 overexpression in AGS GC cells significantly inhibited cell proliferation, migration and invasion in vitro. Kiss‑1 knockdown promoted the proliferation, migration and invasion of HGC‑27 cells. In summary, the data demonstrated that a low expression of Kiss‑1 played a suppressive role for the proliferation, migration and invasion of GC cells. Its expression and methylation levels were associated with the clinical progression of GC. Thus, Kiss‑1 is a potential diagnostic and prognostic marker as well as a new target for the treatment of GC.
Collapse
|
11
|
Stathaki M, Stamatiou ME, Magioris G, Simantiris S, Syrigos N, Dourakis S, Koutsilieris M, Armakolas A. The role of kisspeptin system in cancer biology. Crit Rev Oncol Hematol 2019; 142:130-140. [PMID: 31401420 DOI: 10.1016/j.critrevonc.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Kisspeptins are a family of neuropeptides that are known to be critical in puberty initiation and ovulation. Apart from that kisspeptin derived peptides (KPs) are also known for their antimetastatic activities in several malignancies. Herein we report recent evidence of the role of kisspeptins in cancer biology and we examine the prospective of targeting the kisspeptin pathways leading to a better prognosis in patients with malignant diseases.
Collapse
Affiliation(s)
- Martha Stathaki
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Maria Evanthia Stamatiou
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - George Magioris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Simantiris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Nikolaos Syrigos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Dourakis
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens School of Medicine Hippokration General Hospital Athens Greece, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece.
| |
Collapse
|
12
|
Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer. Oncogene 2019; 38:5038-5049. [DOI: 10.1038/s41388-019-0774-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/07/2018] [Accepted: 02/16/2019] [Indexed: 02/07/2023]
|
13
|
Wang GM, Liu JF, Zhang L, Sun Q, Zhou Y, Xu HB, Zhang YJ, Cai F, Cheng ZN, Xiang P, Jiang H. Inhibition of KiSS-1 on metastasis of nasopharyngeal carcinoma implant tumor in nude mice. Am J Transl Res 2019; 11:904-910. [PMID: 30899390 PMCID: PMC6413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a kind of head-neck malignant neoplasm originated from the nasopharyngeal epithelium and is mainly prevalent in Southern China and Southeast Asia countries. KiSS-1 is an inhibitor of tumor metastasis in a range of cancers. METHODS We establish a cell substrain of SUNE-1-5-8F (NPC cell line from humans) that trsnfected with lentiviral vectors carried with KiSS-1 gene and were selected by puromycin. A transplantation tumor animal model in BALB/c-nu mice was successfully established with a substrain that stably overexpressed KiSS-1. RESULTS Our result showed that the size of transplantation tumor in the nude mice with KiSS-1 overexpression in transplantation tumor was not difference from the size of transplantation tumor in the controlled transplantation tumor mice. We detected metastatic tumor in lung but not in liver. Moreover, we also found that in the nude mice with KiSS-1 overexpression in transplantation tumor showed extremely fewer metastatic tumor in lung compared with the controlled transplantation tumor mice model. In conclusion, KiSS-1 may be beneficial for the inhibition of metastasis of human NPC. CONCLUSION This study may throw light on the treatment of NPC and may help improve the prognosis of patients with NPC.
Collapse
Affiliation(s)
- Geng-Ming Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Jin-Feng Liu
- Department of Radiation Oncology, Anhui No. 2 Province People’s HospitalHefei 230041, Anhui, P. R. China
| | - Lei Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Qian Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Yan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Hong-Bo Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Ya-Jun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Feng Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Ze-Nong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Ping Xiang
- Department of Central Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, P. R. China
| |
Collapse
|
14
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
15
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
16
|
Wang W, Chen ZX, Guo DY, Tao YX. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol Ther 2018; 191:135-147. [PMID: 29909235 DOI: 10.1016/j.pharmthera.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 11/27/2022]
Abstract
Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Zhao-Xia Chen
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
17
|
Labrecque MP, Takhar MK, Nason R, Santacruz S, Tam KJ, Massah S, Haegert A, Bell RH, Altamirano-Dimas M, Collins CC, Lee FJS, Prefontaine GG, Cox ME, Beischlag TV. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells. Oncotarget 2018; 7:24284-302. [PMID: 27015368 PMCID: PMC5029701 DOI: 10.18632/oncotarget.8301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies.
Collapse
Affiliation(s)
- Mark P Labrecque
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mandeep K Takhar
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rebecca Nason
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie Santacruz
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin J Tam
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shabnam Massah
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anne Haegert
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert H Bell
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manuel Altamirano-Dimas
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank J S Lee
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gratien G Prefontaine
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael E Cox
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy V Beischlag
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
18
|
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in Cancer: Friend or Foe? Front Endocrinol (Lausanne) 2018; 9:437. [PMID: 30123188 PMCID: PMC6085450 DOI: 10.3389/fendo.2018.00437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The KISS1 gene encodes KISS1, a protein that is rapidly processed in serum into smaller but biologically active peptides called kisspeptins (KPs). KISS1 and the KPs signal via the G-protein coupled receptor KISS1R. While KISS1 and KPs are recognized as potent positive regulators of the reproductive neuroendocrine axis in mammals, the first reported role for KISS1 was that of metastasis suppression in melanoma. Since then, it has become apparent that KISS1, KPs, and KISS1R regulate the development and progression of several cancers but interestingly, while these molecules act as suppressors of tumorigenesis and metastasis in many cancers, in breast and liver cancer they function as promoters. Thus, they join a small but growing number of molecules that exhibit dual roles in cancer highlighting the importance of studying cancer in context. Given their roles, KISS1, KPs and KISS1R represent important molecules in the development of novel therapies and/or as prognostic markers in treating cancer. However, getting to that point requires a detailed understanding of the relationship between these molecules and different cancers. The purpose of this review is therefore to highlight and discuss the clinical studies that have begun describing this relationship in varying cancer types including breast, liver, pancreatic, colorectal, bladder, and ovarian. An emerging theme from the reviewed studies is that the relationship between these molecules and a given cancer is complex and affected by many factors such as the micro-environment and steroid receptor status of the cancer cell. Our review and discussion of these important clinical studies should serve as a valuable resource in the successful development of future clinical studies.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Muriel Brackstone
- Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Sally Radovick
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Andy V. Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Moshmi M. Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Moshmi M. Bhattacharya
| |
Collapse
|
19
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Lo UG, Lee CF, Lee MS, Hsieh JT. The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. Int J Mol Sci 2017; 18:ijms18102079. [PMID: 28973968 PMCID: PMC5666761 DOI: 10.3390/ijms18102079] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Cheng-Fan Lee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Singh R, Bhatt MLB, Singh SP, Kumar V, Goel MM, Mishra DP, Kumar R. Evaluation of KiSS1 as a Prognostic Biomarker in North Indian Breast Cancer Cases. Asian Pac J Cancer Prev 2017; 17:1789-95. [PMID: 27221854 DOI: 10.7314/apjcp.2016.17.4.1789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is the commonest female cancer worldwide and its propensity to metastasize negatively impacts on therapeutic outcome. Several clinicopathological parameters with prognostic/predictive significance have been associated with metastatic suppressor expression levels. The role of metastatic suppressor gene (MSG) KiSS1 in breast cancer remains unclear. Our goal was to investigate the possible clinical significance of KiSS1 breast cancer. MATERIALS AND METHODS The study was conducted on 87 histologically proven cases of breast cancer and background normal tiisue. Quantitative reverse transcriptase polymerase chain reaction (qRT PCR) and immunohistochemistry (IHC) were used to investigate KiSS1 at gene and protein levels, respectively, for correlation with several patient characteristics including age, family history, hormonal receptor status, stage, tumor size, nodal involvement and metastatic manifestation and finally with median overall survival (OS). RESULTS Our study revealed (i) KiSS1 levels were generally elevated in breast cancer vs normal tissue (< 0.05). (ii) however, a statistically significant lower expression of KiSS1 was observed in metastatic vs non metastatic cases (P = 0.04). (iii) KiSS1 levels strongly correlated with T,N,M category, histological grade and advanced stage (<0.001) but not other studied parameters. (iv) Lastly, a significant correlation between expression of KiSS1 and median OS was found (P = 0.04). CONCLUSIONS Conclusively, less elevated KiSS1 expression is a negative prognostic factor for OS, advancing tumor stage, axillary lymph node status, metastatic propensity and advancing grade of the breast cancer patient. Patients with negative KiSS1 expression may require a more intensive therapeutic strategy.
Collapse
Affiliation(s)
- Richa Singh
- Department of Radiotherapy, King George's Medical University, India E-mail :
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang G, Chu C, Huang T, Kong X, Zhang Y, Zhang N, Cai YD. Exploring Mouse Protein Function via Multiple Approaches. PLoS One 2016; 11:e0166580. [PMID: 27846315 PMCID: PMC5112993 DOI: 10.1371/journal.pone.0166580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023] Open
Abstract
Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality.
Collapse
Affiliation(s)
- Guohua Huang
- Department of Mathematics, Shaoyang University, Shaoyang, Hunan, 422000, China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunhua Zhang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin Key Lab of Biomedical Engineering Measurement, Tianjin University, Tianjin, China
- * E-mail: (NZ); (Y-DC)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
- * E-mail: (NZ); (Y-DC)
| |
Collapse
|
23
|
Esposito S, Russo MV, Airoldi I, Tupone MG, Sorrentino C, Barbarito G, Di Meo S, Di Carlo E. SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget 2016; 6:17121-34. [PMID: 25686823 PMCID: PMC4627296 DOI: 10.18632/oncotarget.2736] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
Prostate Cancer (PCa)-related deaths are mostly due to metastasization of poorly differentiated adenocarcinomas often endowed with neuroendocrine differentiation (NED) areas. The SNAI2/Slug gene is a major regulator of cell migration and tumor metastasization. We here assessed its biological significance in NED, and metastatic potential of PCa. SNAI2 expression was down-regulated in most PCa epithelia, in association with gene promoter methylation, except for cell clusters forming: a. the expansion/invasion front of high-grade PCa, b. NED areas, or c. lymph node metastasis. Knockdown of SNAI2 in PC3 cells down-regulated the expression of neural-tissue-associated adhesion molecules, Neural-Cadherin, Neural-Cadherin-2, Neuronal-Cell-Adhesion-Molecule, and of the NED marker Neuron-Specific Enolase, whereas it abolished Chromogranin-A expression. The metastasis-suppressor genes, Nm23-H1 and KISS1, were up-regulated, while the pluripotency genes SOX2, NOTCH1, CD44v6, WWTR1/TAZ and YAP1 were dramatically down-regulated. Over-expression of SNAI2 in DU145 cells substantiated its ability to regulate metastasis-suppressor, NED and pluripotency genes. In PCa and lymph node metastasis, expression of SOX2 and NOTCH1 was highly related to that of SNAI2. In conclusion, I. SNAI2 silencing in PCa may turn-off the expression of NED markers and pluripotency genes, while turning-on that of specific metastasis-suppressors, II. SNAI2 expression in selected PCa cells, by regulating their self-renewal, NED and metastatic potential, endows them with highly malignant properties. SNAI2 may thus constitute a key target for modern approaches to PCa progression.
Collapse
Affiliation(s)
- Silvia Esposito
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Marco V Russo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Irma Airoldi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Maria Grazia Tupone
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy.,Specialisation School in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Giulia Barbarito
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Serena Di Meo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| |
Collapse
|
24
|
Shin WJ, Cho YA, Kang KR, Kim JH, Hong SD, Lee JI, Hong SP, Yoon HJ. KiSS-1 expression in oral squamous cell carcinoma and its prognostic significance. APMIS 2016; 124:291-8. [DOI: 10.1111/apm.12507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/06/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Wui-Jung Shin
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
| | - Young-Ah Cho
- Department of Oral and Maxillofacial Pathology; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Kyung-Rim Kang
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Seong-Doo Hong
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Jae-Il Lee
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Sam-Pyo Hong
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
25
|
Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 2015; 13:21-32. [DOI: 10.1038/nrurol.2015.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Ji K, Ye L, Ruge F, Hargest R, Mason MD, Jiang WG. Implication of metastasis suppressor gene, Kiss-1 and its receptor Kiss-1R in colorectal cancer. BMC Cancer 2014; 14:723. [PMID: 25260785 PMCID: PMC4190326 DOI: 10.1186/1471-2407-14-723] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/19/2014] [Indexed: 12/27/2022] Open
Abstract
Background Kiss-1 and Kiss-1R have been suggested as a novel pair of metastasis suppressors for several human solid tumours, however, their role in colorectal cancer remains largely unknown. Therefore, the aim of this study was to investigate the role and signal transduction of Kiss-1 and Kiss-1R in colorectal cancer. Methods Ribozyme transgenes were used to knockdown high expression of Kiss-1 and Kiss-1R in HT115 and HRT18 cells. The stabilized transfected cells were then used to deduce the influence of Kiss-1 and Kiss-1R on the function of colorectal cancer cells by in vitro assays and ECIS assay. The effect of Kiss-1 on MMPs related to tumour metastasis was also deleted by zymography. The mRNA and protein expression of Kiss-1 and Kiss-1R, and their correlation to the clinical outcome in human colorectal cancer were investigated using real-time PCR and IHC respectively. Results Knocking down Kiss-1 resulted in increased invasion and migration of colorectal cancer cells. Kisspeptin-10 decreased cellular migration of colorectal cancer cells and required ERK signaling as shown during the ECIS based analyses. Reduction of MMP-9 was caused by Kisspeptin-10 and ERK inhibitor, shown by zymography. In human colorectal cancer tissues, the mRNA expression level of Kiss-1 had a negative correlation with Dukes staging, TNM staging, tumour size and lymph node involvement. Reduction of Kiss-1R was also linked to poor prognosis for the patients. Conclusions The present study has presented evidence that Kiss-1 may be a putative metastasis suppressor molecule in human colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen G Jiang
- Cardiff University-Peking University Joint Oncology Institute, Metastasis & Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
27
|
Chen SQ, Chen ZH, Lin SY, Dai QB, Fu LX, Chen RQ. KISS1 methylation and expression as predictors of disease progression in colorectal cancer patients. World J Gastroenterol 2014; 20:10071-10081. [PMID: 25110434 PMCID: PMC4123336 DOI: 10.3748/wjg.v20.i29.10071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/07/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of aberrant methylation of the KISS1 promoter on the development of colorectal cancer (CRC) and to investigate reversing aberrant methylation of the KISS1 promoter as a potential therapeutic target.
METHODS: KISS1 promoter methylation, mRNA expression and protein expression were detected by methylation-specific polymerase chain reaction (PCR), real-time quantitative PCR and Western blotting, respectively, in 126 CRC tissues and 142 normal colorectal tissues. Human CRC cells with KISS1 promoter hypermethylation and poor KISS1 expression were treated in vitro with 5-aza-2’-deoxycytidine (5-Aza-CdR). After treatment, KISS1 promoter methylation, KISS1 mRNA and protein expression and cell migration and invasion were evaluated.
RESULTS: Hypermethylation of KISS1 occurred frequently in CRC samples (83.1%, 105/126), but was infrequent in normal colorectal tissues (6.34%, 9/142). Moreover, KISS1 methylation was associated with tumor differentiation, the depth of invasion, lymph node metastasis and distant metastasis (P < 0.001). KISS1 methylation was also associated with low KISS1 expression (P < 0.001). Furthermore, we observed re-expression of the KISS1 gene and decreased cell migration after 5-Aza-CdR treatment in a CRC cell line.
CONCLUSION: These data suggest that KISS1 is down-regulated in cancer tissues via promoter hypermethylation and therefore may represent a candidate target for treating metastatic CRC.
Collapse
|
28
|
MacLean DB, Matsui H, Suri A, Neuwirth R, Colombel M. Sustained exposure to the investigational Kisspeptin analog, TAK-448, down-regulates testosterone into the castration range in healthy males and in patients with prostate cancer: results from two phase 1 studies. J Clin Endocrinol Metab 2014; 99:E1445-53. [PMID: 24762108 DOI: 10.1210/jc.2013-4236] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/OBJECTIVE Kisspeptin-54, an endogenous naturally occurring ligand of the G protein-coupled receptor-54, stimulates GnRH-gonadotropin secretion and suppresses metastases in animal models of cancer but is subject to rapid degradation and inactivation. TAK-448 is an investigational oligopeptide analog of the fully active 10-amino acid C terminus of kisspeptin-54. This phase 1 study evaluated the safety, pharmacokinetics, and pharmacodynamics of TAK-448 in healthy subjects and patients with prostate cancer (PC). DESIGN Healthy subjects aged 50 years or older received TAK-448 sc as a single-bolus or 2-hour infusion (0.01-6 mg/d; part A) and as a 14-day sc administration (0.01-1 mg/d; part B). In a subsequent, open-label, phase 1 study in PC patients aged 40-78 years, TAK-448 was given as a 1-month depot formulation. RESULTS Eighty-two healthy subjects received TAK-448; 30 received placebo. Grades 1-2 adverse events were reported in 26% of subjects during TAK-448 treatment. All dosing regimens resulted in dose-proportional exposures. The maximum observed plasma concentration occurred after 0.25-0.5 hours, and median terminal elimination half-life was 1.4-5.3 hours. T increased approximately 1.3- to 2-fold by 48 hours after a single bolus or 2 hour injections, whereas during the 14-day infusion, at doses above 0.1 mg/d, T dropped to below-baseline values by 60 hours and reached a subsequently sustained below-castration level by day 8. In PC patients, T decreased to less than 20 ng/dL in four of five patients dosed with 12 or 24 mg TAK-448 sc-depot injections. The prostate-specific antigen decreased greater than 50% in all patients dosed with 24 mg. CONCLUSIONS Continuous TAK-448 infusion was well tolerated by healthy males and resulted in sustained T suppression. Depot injection in patients with PC similarly reduced T and resulted in prostate-specific antigen responses.
Collapse
Affiliation(s)
- David B MacLean
- Takeda Pharmaceuticals International Co (D.B.M., A.S., R.N.), Cambridge, Massachusetts 02139; Takeda Pharmaceutical Company, Ltd (H.M.), Kanagawa 251-8555, Japan; and Hospital Edouard Herriot (M.C.), 69003 Lyon, France
| | | | | | | | | |
Collapse
|
29
|
Harihar S, Pounds KM, Iwakuma T, Seidah NG, Welch DR. Furin is the major proprotein convertase required for KISS1-to-Kisspeptin processing. PLoS One 2014; 9:e84958. [PMID: 24454770 PMCID: PMC3890299 DOI: 10.1371/journal.pone.0084958] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
KISS1 is a broadly functional secreted proprotein that is then processed into small peptides, termed kisspeptins (KP). Since sequence analysis showed cleavage at KR or RR dibasic sites of the nascent protein, it was hypothesized that enzyme(s) belonging to the proprotein convertase family of proteases process KISS1 to generate KP. To this end, cell lines over-expressing KISS1 were treated with the proprotein convertase inhibitors, Dec-RVKR-CMK and α1-PDX, and KISS1 processing was completely inhibited. To identify the specific enzyme(s) responsible for KISS1 processing, mRNA expression was systematically analyzed for six proprotein convertases found in secretory pathways. Consistent expression of the three proteases – furin, PCSK5 and PCSK7 – were potentially implicated in KISS1 processing. However, shRNA-mediated knockdown of furin – but not PCSK5 or PCSK7 – blocked KISS1 processing. Thus, furin appears to be the essential enzyme for the generation of kisspeptins.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Keke M. Pounds
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Tomoo Iwakuma
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Nabil G. Seidah
- Clinical Research Institute of Montreal, affiliated to Université de Montréal, Montréal, Québec, Canada
| | - Danny R. Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Takeya K, Hasuda T, Takahashi Y, Shoji S, Morishige T, Katsumata A, Tsurifune F, Tsutsumi M, Honda Y, Hitotsuyanagi Y, Terachi T, Uchida T. Synthesis of Sunitinib-Metastin Conjugate, a Novel Esterase-Sensitive Prodrug System Based on Lactonization Reaction. HETEROCYCLES 2014. [DOI: 10.3987/com-14-13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Ji K, Ye L, Mason MD, Jiang WG. The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (Review). Int J Mol Med 2013; 32:747-54. [PMID: 23969598 DOI: 10.3892/ijmm.2013.1472] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022] Open
Abstract
Metastasis is a complex multistep process that involves the impairment of cell-cell adhesion in the neoplastic epithelium, invasion into adjacent tissues and the dissemination of cancer cells through the lymphatic and haematogenous routes. The inhibition of the metastatic process at an early stage has become a hot topic in cancer research. The Kiss-1 gene, initially described as a suppressor of metastasis in malignant melanoma, encodes the Kiss-1 protein which can be processed to other peptides, e.g., Kisspeptin-10, Kisspeptin-13, Kisspeptin-14 and Kisspeptin-54. These peptides are endogenous ligands of the Kiss‑1 receptor (Kiss-1R), a G protein-coupled receptor (GPR) also known as hOT7T175, AXOR12 or GPR54. The Kiss-1 gene has been suggested as a suppressor of metastasis in a various types of cancer, including gastric cancer, oesophageal carcinoma, pancreatic, ovarian, bladder and prostate cancer, through the regulation of cellular migration and invasion. In the current review, we summarise the current understanding of the role of Kiss‑1 and Kiss‑1R in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Ke Ji
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | | | | | | |
Collapse
|
32
|
Shoji S, Sato H, Tomonaga T, Kim H, Soeda S, Nakano M, Uchida T, Terachi T, Takeya K. Potential of metastin and metastin receptor as biomarkers for urological cancers. World J Clin Urol 2013; 2:10-14. [DOI: 10.5410/wjcu.v2.i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the current state of the research of metastin and metastin receptor in the urological cancer field.
METHODS: For analyzing the value of metastin and metastin receptor as molecular biomarkers for the patients with urological cancer, MEDLINE database searches were performed using these terms: metastin, KISS1, kisspeptin, renal (cell) carcinoma (RCC), kidney cancer or urothelial cancer or bladder cancer or prostate cancer or testicular cancer (tumor). Since the articles were evaluated by the validity of the articles based on plausibility, credibility, and evidence levels, the articles were graded according to their level of evidence, using the grading system defined by the Oxford Centre for Evidence-based Medicine.
RESULTS: A total of six clinical studies published by individual institutions between 2003 and 2013 were included in this review. The article numbers for each of the evidence levels 2a and 2b were three (50%) and three (50%), respectively. Immunohistochemistry and reverse transcriptase-polymerase chain reaction using tumor tissues were performed to analyze in five articles (83%) and in one article (17%). The value of metastin and/or metastin receptor as molecular biomarkers in clear cell RCC, upper tract urothelial carcinoma, and bladder cancer was evaluated by multivariate analysis. Low expression of metastin receptor in clear cell RCC and low expression of metastin in upper tract urothelial carcinoma were significant risk factors for metastasis, and low metastin expression was an independent prognostic factor in bladder cancer.
CONCLUSION: Metastin and metastin receptor have potential as suitable molecular biomarkers for urological cancers. However, future studies of metastin and metastin receptor should undergo external validation to ensure consistency across different patient series, since individual institutional studies lack generalization.
Collapse
|
33
|
Abstract
Uveal melanoma is a rare but life-threatening malignancy. Over the past decades, the morbidity of uveal melanoma has been markedly reduced as a result of advances in the diagnostic ability to detect smaller tumors at an earlier stage. This has allowed for the use of more conservative treatments, avoiding enucleation. Mortality, however, has remained unchanged. This indicates that life expectancy is independent of local tumor control. Metastatic disease, the leading cause of death, is usually diagnosed many years later, despite successful treatment of the primary tumor, and at a late stage, when no effective therapy is available. These observations suggest that the disease was already disseminated at the time of tumor diagnosis. The detection of circulating malignant cells in the bloodstream of patients at different time points in the course of the disease supports this observation. Tumor dormancy has been considered as the leading theory for this intriguing delayed appearance of metastasis. Recent knowledge gained about the biological behavior of uveal melanoma as well as novel potential therapeutic targets are presented in this review.
Collapse
|