1
|
Kidzeru EB, Sinkala M, Chalwa T, Matobole R, Alkelani M, Ghasemishahrestani Z, Mbandi SK, Blackburn J, Tabb DL, Adeola HA, Khumalo NP, Bayat A. Subcellular Fractionation and Metaproteogenomic Identification and Validation of Key Differentially Expressed Molecular Targets for Keloid Disease. J Invest Dermatol 2025; 145:660-677.e8. [PMID: 39122141 DOI: 10.1016/j.jid.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Keloid disease (KD) is a common connective tissue disorder of unknown aetiopathogenesis with ill-defined treatment. Keloid scars present as exophytic fibroproliferative reticular lesions postcutaneous injury, and even though KD remains neoplastically benign, keloid lesions behave locally aggressive, invasive and expansive. To date, there is limited understanding and validation of biomarkers identified through combined proteomic and genomic evaluation of KD. Therefore, the aim in this study was to identify putative causative candidates in KD by performing a comprehensive proteomics analysis of subcellular fractions as well as the whole cell, coupled with transcriptomics data analysis of normal compared with KD fibroblasts. We then applied novel integrative bioinformatics analysis to demonstrate that NF-kB-p65 (RELA) from the cytosolic fraction and CAPN2 from the whole-cell lysate were statistically significantly upregulated in KD and associated with alterations in relevant key signaling pathways, including apoptosis. Our findings were further confirmed by showing upregulation of both RELA and CAPN2 in KD using flow cytometry and immunohistochemistry. Moreover, functional evaluation using real-time cell analysis and flow cytometry demonstrated that both omeprazole and dexamethasone inhibited the growth of KD fibroblasts by enhancing the rate of apoptosis. In conclusion, subcellular fractionation and metaproteogenomic analyses have identified, to our knowledge, 2 previously unreported biomarkers of significant relevance to keloid diagnostics and therapeutics.
Collapse
Affiliation(s)
- Elvis B Kidzeru
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII), Centre for Research on Health and Priority Pathologies (CRSPP), Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon; Division of Radiation Oncology, Department of Radiation Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Temwani Chalwa
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Relebohile Matobole
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Madeha Alkelani
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Zeinab Ghasemishahrestani
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Stanley K Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa; Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Henry Ademola Adeola
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Freedman P, Schock B, O’Reilly S. The Novel Cytokine Interleukin-41/Meteorin-like Is Reduced in Diffuse Systemic Sclerosis. Cells 2024; 13:1205. [PMID: 39056787 PMCID: PMC11274529 DOI: 10.3390/cells13141205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease with a triad of features that include vascular abnormalities, inflammation and skin and lung fibrosis. At the core of the disease is the activation of myofibroblasts from quiescent fibroblasts and this can be modified by various cytokines. IL-41 is a recently described cytokine that was initially characterised as an adipokine as it was highly expressed in adipocytes and adipose tissue. However, it has recently been identified as being widely expressed and has immunomodulatory functions. This study examined the circulating levels of IL-41 and its expression in skin biopsies. We demonstrated significantly reduced levels of IL-41 in diffuse SSc that was also mirrored in the skin of SSc patients. AMPK has been proposed as a downstream target of IL-41, so we also measure mammalian target of rapamycin in skin and found that this is elevated in SSc patients. We speculate that IL-41 maybe an antifibrotic cytokine and its reduction may facilitate the activation of fibroblasts.
Collapse
Affiliation(s)
- Paul Freedman
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Bettina Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, UK
| | - Steven O’Reilly
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Lu HT, Jiao YY, Yu TY, Shi JX, Tian JW, Zou GM, Liu L, Zhuo L. Unraveling DDIT4 in the VDR-mTOR pathway: a novel target for drug discovery in diabetic kidney disease. Front Pharmacol 2024; 15:1344113. [PMID: 38567351 PMCID: PMC10985261 DOI: 10.3389/fphar.2024.1344113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.
Collapse
Affiliation(s)
- Hai-tao Lu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-yuan Jiao
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Tian-yu Yu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Jing-xuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing-wei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Gu-ming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Lin Liu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Li Z, Zhang C, Zhang Q, Dong Y, Sha X, Jiang M, Yan J, Wang W, Li H, Zhang Y, Zhou YL. Identification of a potential bioinformatics-based biomarker in keloids and its correlation with immune infiltration. Eur J Med Res 2023; 28:476. [PMID: 37915086 PMCID: PMC10621210 DOI: 10.1186/s40001-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Keloid formation is a pathological consequence resulting from cutaneous irritation and injury, primarily attributed to excessive collagen matrix deposition and fibrous tissue proliferation. Chronic inflammation, left uncontrolled over an extended period, also stands as a substantial contributing factor. The precise mechanisms underlying keloid formation remain unclear. Therefore, this study aimed to identify key genes for diagnostic purposes. To achieve this, we used two Gene Expression Omnibus (GEO) data sets to identify differentially expressed genes. We identified one particular gene, homeobox C9 (HOXC9), using a thorough strategy involving two algorithms (least absolute shrinkage and selection operator and support vector machine-recursive feature elimination) and weighted gene co-expression network analysis. We then assessed its expression in normal and keloid tissues. In addition, we explored its temporal expression patterns via Mfuzz time clustering analysis. In our comprehensive analysis, we observed that immune infiltration, as well as cell proliferation, are crucial to keloid formation. Thus, we investigated immune cell infiltration in the keloid and normal groups, as well as the correlation between HOXC9 and these immune cells. It was found that HOXC9 was closely associated with the immune microenvironment of keloids. This shows that HOXC9 can serve as a potential biomarker and therapeutic target for keloids.
Collapse
Affiliation(s)
- Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yipeng Dong
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ming Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Wenmiao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Houqiang Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - You Lang Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Choi S, Ham S, Lee YI, Kim J, Lee WJ, Lee JH. Silibinin Downregulates Types I and III Collagen Expression via Suppression of the mTOR Signaling Pathway. Int J Mol Sci 2023; 24:14386. [PMID: 37762688 PMCID: PMC10531945 DOI: 10.3390/ijms241814386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.
Collapse
Affiliation(s)
- Sooyeon Choi
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| | - Jihee Kim
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Won Jai Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| |
Collapse
|
6
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
7
|
Neves LMG, Wilgus TA, Bayat A. In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models. Adv Wound Care (New Rochelle) 2023; 12:97-116. [PMID: 34915768 DOI: 10.1089/wound.2021.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: The cutaneous repair process naturally results in different types of scarring that are classified as normal or pathological. Affected individuals are often affected from an esthetic, physical (functional), and psychosocial perspective. The distinct nature of scarring in humans, particularly the formation of pathological scars, makes the study of skin scarring a challenge for researchers in this area. Several established experimental models exist for studying scar formation. However, the increasing development and validation of newly emerging models have made it possible to carry out studies focused on different variables that influence this unique process. Recent Advances: Experimental models such as in vitro, ex vivo, and in vivo models have obtained different degrees of success in the reproduction of the scar formation in its native milieu and true environment. These models also differ in their ability to elucidate the molecular, cellular, and structural mechanisms involved in scarring, as well as for testing new agents and approaches for therapies. The models reviewed here, including cells derived from human skin and in vivo animal models, have contributed to the advancement of skin scarring research. Critical Issues and Future Directions: The absence of experimental models that faithfully reproduce the typical characteristics of the different types of human skin scars makes the improvement of validated models and the establishment of new ones a critical unmet need. The fields of wound healing research combined with tissue engineering have offered newer alternatives for experimental studies with the potential to provide clinically useful knowledge about scar formation.
Collapse
Affiliation(s)
- Lia M G Neves
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
| | - Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom.,Medical Research Council (MRC) Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Chen Y, Chen C, Fang J, Su K, Yuan Q, Hou H, Xin H, Sun J, Huang C, Li S, Yuan Z, Luo S. Targeting the Akt/PI3K/mTOR signaling pathway for complete eradication of keloid disease by sunitinib. Apoptosis 2022; 27:812-824. [PMID: 35802302 DOI: 10.1007/s10495-022-01744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Keloid disease is a nodular lesion, tumor-like but not cancerous, and characterized of excessive proliferation of fibroblasts and deposition of extracellular matrix (ECM) components. This condition often causes itching, pain and cosmetic disfigurement, significantly reducing patient quality of life. To date, no universally effective therapies are available, possibly due to inadequate understanding of keloid pathogenesis. As an oral small-molecule inhibitor of certain tyrosine kinase receptors, sunitinib has shown significant therapeutic effects in renal cell carcinoma (RCC) and gastrointestinal stromal tumor (GIST). However, it has never been tested if keloid therapy can be effective for the management of keloids. This study thus aims to explore the potential of sunitinib for keloid treatment. Keloid-derived fibroblasts (KFs) were successfully isolated and demonstrated proliferative advantage to normal skin-derived fibroblasts (NFs). Additionally, sunitinib showed specific cytotoxicity and inhibition of invasion, and induced cell cycle arrest and significant apoptosis in KFs. These effects were accompanied by complete suppression of ECM component expression, including collagen types 1 and 3, upregulation of autophagy-associated LC3B and significant suppression of the Akt/PI3K/mTOR pathway. Moreover, a keloid explant culture model was successfully established and used to test the therapeutic efficacy of sunitinib on keloid formation in nude mice. Sunitinib was found to induce complete regression of keloid explant fragments in nude mice, showing significantly higher therapeutic efficacy than the most commonly used intralesional drug triamcinolone acetonide (TAC). These data suggest that sunitinib effectively inhibits keloid development through suppression of the Akt/PI3K/mTOR pathway and thus can be potentially developed as a monotherapy or combination therapy for the effective treatment of keloid disease.
Collapse
Affiliation(s)
- Yiqing Chen
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Chunlin Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Junren Fang
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Kui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huan Hou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huijuan Xin
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Chaohong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China.
| | - Shengkang Luo
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China. .,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| |
Collapse
|
10
|
Kim S, Lee SE, Yi S, Jun S, Yi YS, Nagar H, Kim CS, Shin C, Yeo MK, Kang YE, Oh SH. Tauroursodeoxycholic Acid Decreases Keloid Formation by Reducing Endoplasmic Reticulum Stress as Implicated in the Pathogenesis of Keloid. Int J Mol Sci 2021; 22:ijms221910765. [PMID: 34639105 PMCID: PMC8509846 DOI: 10.3390/ijms221910765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-β signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.
Collapse
Affiliation(s)
- Sunje Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Seong Eun Lee
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Shinae Yi
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
| | - Harsha Nagar
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Cuk-Seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Chungmin Shin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Yea Eun Kang
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| |
Collapse
|
11
|
Jiang M, Bu WB, Chen YJ, Li L, Xiao T, Gu H. Mediation of Anti-Keloid Effects of mTOR Inhibitors by Autophagy-Independent Machinery. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021; 4:210-218. [DOI: 10.1097/jd9.0000000000000189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2025]
Abstract
Abstract
Objective:
Blocking mechanistic target of rapamycin (mTOR) activation with mTOR inhibitors has promising therapeutic potential for keloids. However, the precise mechanism of mTOR inhibitors remains unclear. This study was aimed to investigate the role of autophagy machinery in the anti-keloid effects of mTOR inhibitors.
Methods:
We first validated the biological effects induced by the mTOR inhibitors rapamycin (100 nmol/L) and KU-0063794 (5 μmol/L) on the proliferation, apoptosis, migration, and collagen synthesis of keloid fibroblasts (KFs) derived from Han Chinese persons through a Cell Counting Kit-8 assay, 5-Bromo-2’-deoxyuridine incorporation, Annexin V/propidium iodide staining, migration, and western blotting. To explore whether autophagy machinery is involved in the anti-keloid effects of mTOR inhibitors, we first blocked the autophagy activation induced by rapamycin and KU-0063794 with a pharmacological autophagy inhibitor (wortmannin) or by silencing the key autophagy gene (ATG5), and we then re-evaluated these biological effects on KFs.
Results:
Blocking mTOR activation with either rapamycin or KU-0063794 completely inhibited proliferation, migration, and collagen synthesis of primary KFs but did not affect apoptosis. Incubating KFs with the autophagy inhibitor wortmannin or performing ATG5 silencing abrogated the subsequent activation of autophagic activity induced by rapamycin (rapamycin + E-64d + pepstatin vs. rapamycin + wortmannin + E-64d + pepstatin: 1.88 ± 0.38 vs. 1.02 ± 0.35, F = 6.86, P = 0.013), (non-sense control + rapamycin vs. ATG5 small interfering RNA + rapamycin: 1.46 ± 0.18 vs. 0.75 ± 0.20, respectively; F = 7.68, P = 0.01) or KU-0063794 (KU-0063794 + E-64d + pepstatin vs. KU-0063794 + wortmannin + E-64d + pepstatin: 1.65 ± 0.35 vs. 0.76 ± 0.17, F = 10.01, P = 0.004), (NC + KU-0063794 vs. ATG5 small interfering RNA + KU-0063794: 1.59 ± 0.50 vs. 0.77 ± 0.09, F = 5.93, P = 0.02) as evidenced by decreased accumulation of LC3-II. However, blockage of autophagy induction in mTOR inhibitor-treated KFs with both methods did not disturb their anti-keloid effects, such as inhibition of cell viability, cell migration, and collagen synthesis (P > 0.05 each).
Conclusion:
Blocking mTOR activation with the mTOR inhibitors rapamycin and KU-0063794 showed anti-keloid effects in KFs. Restoration of autophagy inhibition by mTOR inhibitors does not contribute to their anti-keloid effects.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Yu-Jie Chen
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Li Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Ta Xiao
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| |
Collapse
|
12
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
13
|
Antifibrotic effects of Hypocrellin A combined with LED red light irradiation on keloid fibroblasts by counteracting the TGF-β/Smad/autophagy/apoptosis signalling pathway. Photodiagnosis Photodyn Ther 2021; 34:102202. [PMID: 33556618 DOI: 10.1016/j.pdpdt.2021.102202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
Keloids are characterized by abnormal proliferation of fibroblasts and continuous deposition of extracellular matrix (ECM) components. In the field of dermopathy, photodynamic therapy (PDT) with visible light has been increasingly investigated. The natural photosensitizer Hypocrellin A (HA) was shown to have excellent light induced anticancer, antimicrobial and antiviral activities. In this experiment, we investigated the impacts of HA united light-emitting diode (LED) red light irradiation on human keloid fibroblast cells (KFs). Our results showed that HA combined with red light irradiation treatment (HA-R-PDT) decreased KF viability, reduced KF collagen production and ECM accumulation, inhibited cell proliferation, suppressed cell invasion and induced cell apoptosis. Moreover, our observations demonstrated that the TGF-β/Smad signalling pathway and autophagy were restrained by HA-R-PDT. TGF-β1 could promote autophagy in KFs through both the Smad and ERK pathways, while inhibition of autophagy altered the TGF-β1 levels through negative feedback. Therefore, HA-R-PDT suppressed cell hyperproliferation, collagen synthesis and ECM accumulation of KFs by regulating the TGF-β1-ERK-autophagy-apoptosis signalling pathway. HA-R-PDT deserves systematic investigation as a potential therapeutic strategy for keloids, and autophagy might be a promising candidate in the treatment of KFs.
Collapse
|
14
|
Xin Y, Min P, Xu H, Zhang Z, Zhang Y, Zhang Y. CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway. BURNS & TRAUMA 2020; 8:tkaa025. [PMID: 33150188 PMCID: PMC7596300 DOI: 10.1093/burnst/tkaa025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/07/2020] [Indexed: 01/21/2023]
Abstract
Background Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion. These pathological behaviours may be related to the heterogeneity of keloid fibroblasts (KFs); however, because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism. Our previous studies revealed that the expansion of CD26+ KFs was responsible for increased keloid proliferation and invasion capabilities; the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation. The aim of this study was to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities, and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target. Methods Flow cytometry was performed to isolate CD26+/CD26− fibroblasts from KFs and normal fibroblasts. To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor (IGF-1R), lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection. Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay. Scratching assay and transwell assay were used to assess cell migration and invasion abilities. To further quantify the regulatory role of CD26 expression in the relevant signalling pathway, RT-qPCR, western blot, ELISA, PI3K activity assay and immunofluorescence were used. Results Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs. Furthermore, the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion. The PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein. Conclusions CD26 can be the effective biomarker for KFs, and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway. This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.
Collapse
Affiliation(s)
- Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| |
Collapse
|
15
|
Zhou BY, Wang WB, Wu XL, Zhang WJ, Zhou GD, Gao Z, Liu W. Nintedanib inhibits keloid fibroblast functions by blocking the phosphorylation of multiple kinases and enhancing receptor internalization. Acta Pharmacol Sin 2020; 41:1234-1245. [PMID: 32327724 PMCID: PMC7608201 DOI: 10.1038/s41401-020-0381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/13/2020] [Indexed: 01/22/2023]
Abstract
Keloid is a benign skin tumor characterized by its cell hyperproliferative activity, invasion into normal skin, uncontrolled growth, overproduction and deposition of extracellular matrices and high recurrence rate after various therapies. Nintedanib is a receptor tyrosine kinase inhibitor targeting VEGF, PDGF, FGF, and TGF-β receptors with proved efficacy in anti-angiogenesis and in treating various types of cancers. In this study, we investigated the effects of nintedanib on keloid fibroblasts in both in vitro and ex vivo models. Keloid fibroblasts were prepared from 54 keloid scar samples in active stages collected from 49 patients. We found that nintedanib (1−4 μM) dose-dependently suppressed cell proliferation, induced G0/G1 cell cycle arrest, and inhibited migration and invasion of keloid fibroblasts. The drug also significantly inhibited the gene and protein expression of collagen I (COL-1) and III (COL-3), fibronectin (FN), and connective growth factor (CTGF), as well as the gene expression of other pathological factors, such as alpha smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), FK506-binding protein 10 (FKBP10), and heat shock protein 47 (HSP47) in keloid fibroblasts. Furthermore, nintedanib treatment significantly suppressed the phosphorylation of p38, JNK, ERK, STAT3, and Smad, enhanced endocytosis of various growth factor receptors. Using an ex vivo tissue explant model, we showed that nintedanib significantly suppressed cell proliferation, migration, and collagen production. The drug also significantly disrupted microvessel structure ex vivo. In summary, our results demonstrate that nintedanib is likely to become a potential targeted drug for keloid systemic therapy.
Collapse
|
16
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Ud-Din S, Bayat A. Keloid scarring or disease: Unresolved quasi-neoplastic tendencies in the human skin. Wound Repair Regen 2020; 28:422-426. [PMID: 31943508 DOI: 10.1111/wrr.12793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 01/31/2023]
Abstract
Keloids are benign fibroproliferative dermal scars of unknown etiopathogenesis resulting in an exophytic protuberant growth with persistent and progressive peri-lesional expansile behavior. Keloids are likened to benign neoplastic lesions due to their aggressive clinical behavior, genotypic-phenotypic tissue characteristics, and resistance to treatment. Keloids are traditionally viewed as scars on the healing spectrum; however, keloids are a distinct pathology provoked by cutaneous injury rather than a continuum. In order to elucidate the etiopathogenesis of keloids, the distinction between scar and disease must be made. Therefore, we hypothesize that the link between keloids and their quasi-neoplastic tendencies distinguish it as a disease rather than a scar alone. The biomarker expression profile in these diseases highlight the striking parallels between keloids and both benign and malignant mesenchymal tumors. Signaling pathways common to these diseases have been found to guide the matrix composition of keloids. This hypothesis underscores the need to identify keloids not as a scar but as a disease in order to develop targeted therapy, which can lead to enhanced diagnosis and theranosis.
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, UK
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, UK
| |
Collapse
|
18
|
Tu T, Huang J, Lin M, Gao Z, Wu X, Zhang W, Zhou G, Wang W, Liu W. CUDC‑907 reverses pathological phenotype of keloid fibroblasts in vitro and in vivo via dual inhibition of PI3K/Akt/mTOR signaling and HDAC2. Int J Mol Med 2019; 44:1789-1800. [PMID: 31545402 PMCID: PMC6777681 DOI: 10.3892/ijmm.2019.4348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Keloids are benign skin tumors with a high recurrence rate following surgical excision. Abnormal intracellular signaling is one of the key mechanisms involved in its pathogenesis. Over-activated phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway and overproduction of histone deacetylases 2 (HDAC2) have also been observed in keloid fibroblasts (KFs). The present study aimed to explore the possibility of reversing the KF pathological phenotype using CUDC-907, a dual inhibitor of PI3K/Akt/mTOR pathway and HDACs. KFs and keloid xenografts were treated with CUDC-907 to examine its inhibitory effects on the pathological activities of KFs in vitro and in vivo. CUDC-907 inhibited cell proliferation, migration, invasion and extracellular matrix deposition of in vitro cultured KFs and also suppressed collagen accumulation and disrupted the capillaries of keloid explants ex vivo and in vivo. A mechanistic study of CUDC-907 revealed the initiation of cell cycle arrest at G2/M phase along with the enhanced expression of cyclin-dependent kinase inhibitor 1 and decreased expression of cyclin B in cells treated with CUDC-907. CUDC-907 not only inhibited AKT and mTOR phosphorylation and promoted the acetylation of histone H3, but also significantly inhibited the phosphorylation levels of Smad2/3 and Erk. These preclinical data demonstrating its anti-keloid effects suggest that CUDC-907 may represent a candidate drug for systemic keloid therapy.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Miaomiao Lin
- Department of Otolaryngology, Suzhou First People's Hospital, Suzhou, Anhui 234000, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
19
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Steiner JE, Cottrell CE, Streicher JL, Jensen JN, King DM, Burrows PE, Siegel DH, Tollefson MM, Drolet BA, Püttgen KB. Scarring in Patients With PIK3CA-Related Overgrowth Syndromes. JAMA Dermatol 2019. [PMID: 29516089 DOI: 10.1001/jamadermatol.2017.6189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Patients with somatic overgrowth commonly require surgical intervention to preserve function and improve cosmesis. To our knowledge no observation of scarring outcomes in this population has been published to date. Objective To observe the frequency of abnormal scarring in patients with somatic overgrowth and sequencing-verified mutations in the PIK3CA gene. Design, Setting, and Participants This retrospective study evaluated scarring outcomes in patients with PIK3CA-related overgrowth. Samples of affected tissue were sequenced between July 2015 and October 2016. Medical records from multiple large academic tertiary care centers were reviewed for surgical history and scar descriptions, and clinical photographs were assessed by 2 surgeons (J.N.J. and D.M.K.) to confirm abnormal scarring. Analysis of medical records and photographs was performed between April 2017 and June 2017 by a multidisciplinary team from dermatology, plastic surgery, orthopedic surgery, radiology, and genetics departments. All patients considered for the study were diagnosed with somatic overgrowth and previously had affected tissue sent for next-generation sequencing. Those with pathogenic PIK3CA variants and 1 or more prior surgical procedures were reviewed. Main Outcomes and Measures Presence of excessive scarring in patients with PIK3CA overgrowth. Results A total of 57 patients with segmental overgrowth syndromes were sequenced. Of the 57 patients, 25 (44%) had pathogenic or likely pathogenic variants in PIK3CA. Of those with pathogenic PIK3CA variants, 6 (24%) had past surgical procedures, all with preoperative and postoperative photographs. Of 6 patients with PIK3CA-related overgrowth and a history of 1 or more surgical procedure, 4 (67%) developed excessive scarring. The cohort with abnormal scarring comprised 3 females and 1 male, with a median age of 8.5 years. All abnormal scarring occurred in affected overgrowth tissue. Three of the 4 patients developed the excessive scarring after debulking procedures for overgrowth and/or vascular malformations of the upper or lower extremity. Conclusions and Relevance Excessive scarring occurred frequently in patients with PIK3CA-related overgrowth syndromes. The risk of abnormal scarring should therefore be discussed preoperatively. Given the activating nature of these PIK3CA variants, we suggest that the excessive scarring may be owing in part to up-regulation of the PI3K-Akt-mTOR pathway. Additional studies are needed to assess scarring outcomes in patients with other types of overgrowth.
Collapse
Affiliation(s)
- Jack E Steiner
- Department of Dermatology, Medical College of Wisconsin, Milwaukee.,University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Jenna L Streicher
- Department of Dermatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John N Jensen
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee
| | - David M King
- Department of Orthopedic Surgery, Medical College of Wisconsin, Milwaukee
| | | | - Dawn H Siegel
- Departments of Dermatology and Pediatrics, Medical College of Wisconsin, Milwaukee
| | | | - Beth A Drolet
- Departments of Dermatology and Pediatrics, Medical College of Wisconsin, Milwaukee
| | - Katherine B Püttgen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Chen J, Liu K, Liu Y, Wang X, Zhang Z. Targeting mTORC1/2 with OSI-027 inhibits proliferation and migration of keloid keratinocytes. Exp Dermatol 2019; 28:270-275. [PMID: 30650200 DOI: 10.1111/exd.13882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Keloid is a dermal proliferative disorder characterized by the excessive proliferation and migration of keratinocytes and fibroblasts. Over-activation of the serine/threonine protein kinase, mammalian target of rapamycin (mTOR), plays a pivotal role in the process. Here, we show that both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) were hyper-activated in keloid-derived primary keratinocytes. Further, OSI-027, an mTOR kinase inhibitor, potently inhibited proliferation and migration of keloid keratinocytes. At the molecular level, OSI-027 disrupted the assembly of mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor-mLST8). Further, OSI-027 almost completely blocked the phosphorylation of the mTORC1 substrates, S6K1, S6 and 4EBP1, and the mTORC2 substrate, AKT, at Ser-473. The OSI-027 treatment of keloid keratinocytes showed more effectively inhibited cell proliferation and migration compared to the mTORC1 inhibitor, rapamycin. Moreover, restoring mTORC1 activation by the introduction of the constitutively active S6K1 only partly alleviated OSI-027-induced inhibition of keloid keratinocytes. Notably, mTOR2 inhibition by Rictor siRNAs also inhibited keloid keratinocyte proliferation and migration, but less efficiently than OSI-027. Together, our results imply that concurrent targeting of mTORC1/2 by OSI-027 potently inhibits the proliferation and the migration of keloid keratinocytes. Thus, OSI-027 may have translational value for the treatment of keloid.
Collapse
Affiliation(s)
- Jun Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai, JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Ke Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai, JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Yang Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai, JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Xue Wang
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai, JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Zhen Zhang
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai, JiaoTong University China Hospital Development Institute, Shanghai, China
| |
Collapse
|
22
|
|
23
|
Srivastava A, Shukla V, Tiwari D, Gupta J, Kumar S, Kumar A. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis. Biomed Pharmacother 2018; 105:256-266. [PMID: 29859468 DOI: 10.1016/j.biopha.2018.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors.
Collapse
Affiliation(s)
- Ankita Srivastava
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Vanistha Shukla
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Deepika Tiwari
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Jaya Gupta
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Sunil Kumar
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
24
|
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression.
Collapse
|
25
|
Epithelial-mesenchymal transition in Crohn's disease. Mucosal Immunol 2018; 11:294-303. [PMID: 29346350 DOI: 10.1038/mi.2017.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is often accompanied by the complications of intestinal strictures and fistulas. These complications remain obstacles in CD treatment. In recent years, the importance of epithelial-mesenchymal transition in the pathogenesis of CD-associated fistulas and intestinal fibrosis has become apparent. Epithelial-mesenchymal transition refers to a dynamic change, wherein epithelial cells lose their polarity and adherence and acquire migratory function and fibroblast features. During formation of CD-associated fistulas, intestinal epithelial cells dislocate from the basement membrane and migrate to the lining of the fistula tracts, where they convert into transitional cells as a compensatory response under the insufficient wound healing condition. In CD-associated intestinal fibrosis, epithelial-mesenchymal transition may serve as a source of new fibroblasts and consequently lead to overproduction of extracellular matrix. In this review, we present current knowledge of epithelial-mesenchymal transition and its role in the pathogenesis of CD in order to highlight new therapy targets for the associated complications.
Collapse
|
26
|
Abstract
RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5–15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1.
Collapse
|
27
|
Erdogan CS, Mørup-Lendal M, Dalgaard LT, Vang O. Sirtuin 1 independent effects of resveratrol in INS-1E β-cells. Chem Biol Interact 2017; 264:52-60. [PMID: 28108221 DOI: 10.1016/j.cbi.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/22/2016] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Resveratrol (Resv), a natural polyphenol, is suggested to have various health benefits including improved insulin sensitivity. Resv activates Sirtuin (Sirt1) in several species and tissues. Sirt1 is a protein deacetylase with an important role in ageing, metabolism and β-cell function. In insulinoma β-cells (INS-1E), Resv is previously shown to improve glucose-stimulated insulin secretion in a Sirt1-dependent mechanism and to protect against β-cell dedifferentiation in non-human primates, while inducing hypertrophy in myoblasts. Mammalian (mechanistic) Target of Rapamycin (mTOR), is a key regulator of cellular metabolism and regulates the cell size, β-cell survival and proliferation. In order to understand the interaction of Sirt1 and mTOR cascade activity with Resv-induced changes in the INS-1E cell line, we generated stable Sirt1-down-regulated INS-1E cells, and analysed Sirt1-dependent effects of Resv with respect to mTOR cascade activity. Sirt1-knockdown (KD) had a significant increase in cell size compared to negative-control (NEG CTR) cells. Resveratrol treatment increased cell size in both cell types in a dose-dependent manner at 24 h (Resv conc: 15-60 μM), and decreased the cell number (Resv conc: 30-60 μM). Cell area was increased in NEG CTR cells (Resv conc: 60 μM) at 24 h and KD cells at 48 h (Resv conc: 15-60 μM). Rapamycin, a specific mTOR inhibitor, counteracted the Resv-induced cell enlargement (both cell diameter and area). Furthermore, Sirt1-downregulation by itself did not affect the mTOR cascade activities as measured by Western blotting for total and phosphorylated Akt and mTOR. Rapamycin decreased the mTORC1 activity, while increasing the pAkt levels. Resveratrol did not interfere with the mTOR activity or with Sirt1 expression. Altogether, this work indicates that Sirt1 is a negative regulator of cell size. Moreover, the effect of Resv on cell size increase is mTOR-cascade dependent.
Collapse
Affiliation(s)
- Cihan S Erdogan
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ole Vang
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
28
|
Zhu FQ, Chen MJ, Zhu M, Zhao RS, Qiu W, Xu X, Liu H, Zhao HW, Yu RJ, Wu XF, Zhang K, Huang H. Curcumin Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through the Inhibition of Akt/mTOR Pathway. Biol Pharm Bull 2017; 40:17-24. [PMID: 27829579 DOI: 10.1248/bpb.b16-00364] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curcumin has exhibited a protective effect against development of renal fibrosis in animal models, however, its underlying molecular mechanisms are largely unclear. Therefore, we investigated the anti-fibrosis effects of curcumin in transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT), and the mechanism by which it mediates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Human kidney tubular epithelial cells (HKCs) were treated with TGF-β1 or curcumin alone, or TGF-β1 in combination with curcumin. The effect of curcumin on cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of E-cadherin, cytokeratin, vimentin, alpha smooth muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1) and key proteins of Akt/mammalian target of rapamycin (mTOR) pathway were analyzed by immunocytochemistry, real-time PCR and Western blot. Low dose curcumin (3.125 and 25 µmol/L) effectively promoted HKC proliferation. When HKCs were co-incubated with TGF-β1 and curcumin for 72 h, curcumin maintained the epithelial morphology in a dose-dependent manner, decreased expression of vimentin, α-SMA and FSP1 normally induced by TGF-β1, and increased expression of E-cadherin, cytokeratin. Importantly, we found that curcumin reduced Akt, mTOR and P70S6K phosphorylation, effectively suppressing the activity of the Akt/mTOR pathway in HKCs. Curcumin also promoted HKC proliferation, and antagonized TGF-β1-driven EMT through the inhibition of Akt/mTOR pathway activity, which may suggest an alternative therapy for renal fibrosis.
Collapse
Affiliation(s)
- Fang-Qiang Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Andreoli A, Ruf M, Itin P, Pluschke G, Schmid P. Phosphorylation of the ribosomal protein S6, a marker of mTOR (mammalian target of rapamycin) pathway activation, is strongly increased in hypertrophic scars and keloids. Br J Dermatol 2015; 172:1415-7. [DOI: 10.1111/bjd.13523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- A. Andreoli
- Swiss Tropical and Public Health Institute; Socinstr. 57 Basel Switzerland
- University of Basel; Petersplatz 1 Basel Switzerland
| | - M.T. Ruf
- Swiss Tropical and Public Health Institute; Socinstr. 57 Basel Switzerland
- University of Basel; Petersplatz 1 Basel Switzerland
| | - P. Itin
- Department of Dermatology; University Hospital; Basel Switzerland
| | - G. Pluschke
- Swiss Tropical and Public Health Institute; Socinstr. 57 Basel Switzerland
- University of Basel; Petersplatz 1 Basel Switzerland
| | - P. Schmid
- Swiss Tropical and Public Health Institute; Socinstr. 57 Basel Switzerland
- University of Basel; Petersplatz 1 Basel Switzerland
| |
Collapse
|
30
|
Ding T, Zhu C, Yin JB, Zhang T, Lu YC, Ren J, Li YQ. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci 2015; 122:92-9. [DOI: 10.1016/j.lfs.2014.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
|
31
|
Abstract
The mammalian target of rapamycin (mTOR) has emerged as a potential target for drug development, particularly due to the fact that it plays such a crucial role in cancer biology. In addition, next-generation mTOR inhibitors have become available, marking an exciting new phase in mTOR-based therapy. However, the verdict on their therapeutic efectiveness remains unclear. Here we review phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling as one of the primary mechanisms for sustaining tumor outgrowth and metastasis, recent advances in the development of mTOR inhibitors, and current studies addressing mTOR activation/inhibition in colorectal cancer (CRC). We will also discuss our recent comparative study of diferent mTOR inhibitors in a population of colon cancer stem cells (CSCs), and current major challenges for achieving individualized drug therapy using kinase inhibitors.
Collapse
|
32
|
Hassan M, Selimovic D, El-Khattouti A, Soell M, Ghozlan H, Haikel Y, Abdelkader O, Megahed M. Hepatitis C virus-mediated angiogenesis: Molecular mechanisms and therapeutic strategies. World J Gastroenterol 2014; 20:15467-15475. [PMID: 25400432 PMCID: PMC4229513 DOI: 10.3748/wjg.v20.i42.15467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is an essential process for organ growth and repair. Thus, an imbalance in this process can lead to several diseases including malignancy. Angiogenesis is a critical step in vascular remodeling, tissue damage and wound healing besides being required for invasive tumor growth and metastasis. Because angiogenesis sets an important point in the control of tumor progression, its inhibition is considered a valuable therapeutic approach for tumor treatment. Chronic liver disease including hepatitis C virus (HCV) infection is one of the main cause for the development of hepatic angiogenesis and thereby plays a critical role in the modulation of hepatic angiogenesis that finally leads to hepatocellular carcinoma progression and invasion. Thus, understanding of the molecular mechanisms of HCV-mediated hepatic angiogenesis will help design a therapeutic protocol for the intervention of HCV-mediated angiogenesis and subsequently its outcome. In this review, we will focus on the molecular mechanisms of HCV-mediated hepatic angiogenesis and the related signaling pathways that can be target for current and under development therapeutic approaches.
Collapse
|
33
|
The preliminary study of effects of tolfenamic Acid on cell proliferation, cell apoptosis, and intracellular collagen deposition in keloid fibroblasts in vitro. Dermatol Res Pract 2014; 2014:736957. [PMID: 25328513 PMCID: PMC4190122 DOI: 10.1155/2014/736957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/02/2022] Open
Abstract
Keloid scarring is a fibroproliferative disorder due to the accumulation of collagen type I. Tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, has been found to potentially affect the synthesis of collagen in rats. In this preliminary study, we aimed to test the effects of TA on cell proliferation, cell apoptosis, and the deposition of intracellular collagen in keloid fibroblasts. Normal fibroblasts (NFs) and keloid fibroblasts (KFs) were obtained from human dermis tissue. Within the dose range 10−3–10−6 M and exposure times 24 h, 48 h, and 72 h, we found that 0.55 × 10−3 M TA at 48 h exposure exhibited significantly decreased cell proliferation in both NFs and KFs. Under these experimental conditions, we demonstrated that (1) TA treatment induced a remarkable apoptotic rate in KFs compared to NFs; (2) TA treatment reduced collagen production in KFs versus NFs; (3) TA treatment decreased collagen type I expression in KFs comparing to that of NFs. In summary, our data suggest that TA decreases cell proliferation, induces cell apoptosis, and inhibits collagen accumulation in KFs.
Collapse
|
34
|
Chang W, Wei K, Ho L, Berry GJ, Jacobs SS, Chang CH, Rosen GD. A critical role for the mTORC2 pathway in lung fibrosis. PLoS One 2014; 9:e106155. [PMID: 25162417 PMCID: PMC4146613 DOI: 10.1371/journal.pone.0106155] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases.
Collapse
Affiliation(s)
- Wenteh Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ke Wei
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Ho
- Division of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan S. Jacobs
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cheryl H. Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Glenn D. Rosen
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
ZHANG ZHE, NIE FANGFEI, KANG CHUNFU, CHEN BIN, QIN ZELIAN, MA JIANXUN, MA YONGGUANG, ZHAO XIA. Increased periostin expression affects the proliferation, collagen synthesis, migration and invasion of keloid fibroblasts under hypoxic conditions. Int J Mol Med 2014; 34:253-61. [DOI: 10.3892/ijmm.2014.1760] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 11/05/2022] Open
|
36
|
|
37
|
Ashcroft KJ, Syed F, Bayat A. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling. PLoS One 2013; 8:e75600. [PMID: 24348987 PMCID: PMC3857170 DOI: 10.1371/journal.pone.0075600] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 08/19/2013] [Indexed: 01/31/2023] Open
Abstract
Keloid disease (KD) is an abnormal cutaneous fibroproliferative disorder of unknown aetiopathogenesis. Keloid fibroblasts (KF) are implicated as mediators of elevated extracellular matrix deposition. Aberrant secretory behaviour by KF relative to normal skin fibroblasts (NF) may influence the disease state. To date, no previous reports exist on the ability of site-specific KF to induce fibrotic-like phenotypic changes in NF or normal scar fibroblasts (NS) by paracrine mechanisms. Therefore, the aim of this study was to investigate the influence of conditioned media from site-specific KF on the cellular and molecular behaviour of both NF and NS enabled by paracrine mechanisms. Conditioned media was collected from cultured primary fibroblasts during a proliferative log phase of growth including: NF, NS, peri-lesional keloid fibroblasts (PKF) and intra-lesional keloid fibroblasts (IKF). Conditioned media was used to grow NF, NS, PKF and IKF cells over 240 hrs. Cellular behavior was monitored through real time cell analysis (RTCA), proliferation rates and migration in a scratch wound assay. Fibrosis-associated marker expression was determined at both protein and gene level. PKF conditioned media treatment of both NF and NS elicited enhanced cell proliferation, spreading and viability as measured in real time over 240 hrs versus control conditioned media. Following PKF and IKF media treatments up to 240 hrs, both NF and NS showed significantly elevated proliferation rates (p<0.03) and migration in a scratch wound assay (p<0.04). Concomitant up-regulation of collagen I, fibronectin, α-SMA, PAI-1, TGF-β and CTGF (p<0.03) protein expression were also observed. Corresponding qRT-PCR analysis supported these findings (P<0.03). In all cases, conditioned media from growing marginal PKF elicited the strongest effects. In conclusion, primary NF and NS cells treated with PKF or IKF conditioned media exhibit enhanced expression of fibrosis-associated molecular markers and increased cellular activity as a result of keloid fibroblast-derived paracrine factors.
Collapse
Affiliation(s)
- Kevin J. Ashcroft
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
| | - Farhatullah Syed
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
- Department of Plastic and Reconstructive Surgery, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity. J Invest Dermatol 2013; 133:1340-50. [PMID: 23303455 PMCID: PMC3631609 DOI: 10.1038/jid.2012.483] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mammalian target of rapamycin (mTOR) is essential in controlling several cellular functions. This pathway is dysregulated in keloid disease (KD). KD is a common fibroproliferative dermal lesion with an ill-defined treatment strategy. KD demonstrates excessive matrix deposition, angiogenesis, and inflammatory cell infiltration. In KD, both total and phosphorylated forms of mTOR and p70S6K(Thr421/Ser424) are upregulated. Therefore, the aim of this study was to investigate adenosine triphosphate–competitive inhibitors of mTOR kinase previously unreported in keloid and their comparative efficacy with Rapamycin. Here, we present two mTOR kinase inhibitors, KU-0063794 and KU-0068650, that target both mTORC1 and mTORC2 signaling. Treatment with either KU-0063794 or KU-0068650 resulted in complete suppression of Akt, mTORC1, and mTORC2, and inhibition of keloid cell spreading, proliferation, migration, and invasive properties at a very low concentration (2.5 μmol l−1). Both KU-0063794 and KU-0068650 significantly (P<0.05) inhibited cell cycle regulation and HIF1-α expression compared with that achieved with Rapamycin alone. In addition, both compounds induced shrinkage and growth arrest in KD, associated with the inhibition of angiogenesis, induction of apoptosis, and reduction in keloid phenotype–associated markers. In contrast, Rapamycin induced minimal antitumor activity. In conclusion, potent dual mTORC1 and mTORC2 inhibitors display therapeutic potential for the treatment of KD.
Collapse
|