1
|
Kader M, Yu YP, Liu S, Luo JH. Immuno-targeting the ectopic phosphorylation sites of PDGFRA generated by MAN2A1-FER fusion in HCC. Hepatol Commun 2024; 8:e0511. [PMID: 39082961 DOI: 10.1097/hc9.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND HCC is one of the most lethal cancers for humans. Mannosidase alpha class 2A member 1 (MAN2A1)-FER is one of the most frequent oncogenic fusion genes in HCC. In this report, we showed that MAN2A1-FER ectopically phosphorylated the extracellular domains of PDGFRA, MET, AXL, and N-cadherin. The ectopic phosphorylation of these transmembrane proteins led to the activation of their kinase activities and initiated the activation cascades of their downstream signaling molecules. METHODS A panel of mouse monoclonal antibodies was developed to recognize the ectopic phosphorylation sites of PDGFRA. RESULTS AND CONCLUSIONS The analyses showed that these antibodies bound to the specific phosphotyrosine epitopes in the extracellular domain of PDGFRA with high affinity and specificity. The treatment of MAN2A1-FER-positive cancer HUH7 with one of the antibodies called 2-3B-G8 led to the deactivation of cell growth signaling pathways and cell growth arrest while having minimal impact on HUH7ko cells where MAN2A1-FER expression was disrupted. The treatment of 2-3B-G8 antibody also led to a large number of cell deaths of MAN2A1-FER-positive cancer cells such as HUH7, HEPG2, SNU449, etc., while the same treatment had no impact on HUH7ko cells. When severe combined immunodeficiency mice xenografted with HEPG2 or HUH7 were treated with monomethyl auristatin E-conjugated 2-3B-G8 antibody, it slowed the progression of tumor growth, eliminated the metastasis, and reduced the mortality, in comparison with the controls. Targeting the cancer-specific ectopic phosphorylation sites of PDGFRA induced by MAN2A1-FER may hold promise as an effective treatment for liver cancer.
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Zuo Z, Yu Y, Ren B, Liu S, Nelson J, Wang Z, Tao J, Pradhan‐Sundd T, Bhargava R, Michalopoulos G, Chen Q, Zhang J, Ma D, Pennathur A, Luketich J, Satdarshan Monga P, Nalesnik M, Luo J. Oncogenic Activity of Solute Carrier Family 45 Member 2 and Alpha-Methylacyl-Coenzyme A Racemase Gene Fusion Is Mediated by Mitogen-Activated Protein Kinase. Hepatol Commun 2022; 6:209-222. [PMID: 34505419 PMCID: PMC8710797 DOI: 10.1002/hep4.1724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/09/2022] Open
Abstract
Chromosome rearrangement is one of the hallmarks of human malignancies. Gene fusion is one of the consequences of chromosome rearrangements. In this report, we show that gene fusion between solute carrier family 45 member 2 (SLC45A2) and alpha-methylacyl-coenzyme A racemase (AMACR) occurs in eight different types of human malignancies, with frequencies ranging from 45% to 97%. The chimeric protein is translocated to the lysosomal membrane and activates the extracellular signal-regulated kinase signaling cascade. The fusion protein promotes cell growth, accelerates migration, resists serum starvation-induced cell death, and is essential for cancer growth in mouse xenograft cancer models. Introduction of SLC45A2-AMACR into the mouse liver using a sleeping beauty transposon system and somatic knockout of phosphatase and TENsin homolog (Pten) generated spontaneous liver cancers within a short period. Conclusion: The gene fusion between SLC45A2 and AMACR may be a driving event for human liver cancer development.
Collapse
Affiliation(s)
- Ze‐Hua Zuo
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yan‐Ping Yu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Bao‐Guo Ren
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Joel Nelson
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Zhou Wang
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Junyan Tao
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | | | - Rohit Bhargava
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - George Michalopoulos
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Qi Chen
- Department of PharmacologyToxicology, and TherapeuticsUniversity of KansasKansas CityKSUSA
| | - Jun Zhang
- Department of MedicineUniversity of IowaIowa CityIAUSA
- Present address:
Department of MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Deqin Ma
- Department of PathologyUniversity of IowaIowa CityIAUSA
| | - Arjun Pennathur
- Thoracic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - James Luketich
- Thoracic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Paul Satdarshan Monga
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Michael Nalesnik
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jian‐Hua Luo
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| |
Collapse
|
3
|
Zhang R, Liu Z, Zhang G. CDC45 modulates MCM7 expression and inhibits cell proliferation by suppressing the PI3K/AKT pathway in acute myeloid leukemia. Am J Transl Res 2021; 13:10218-10232. [PMID: 34650692 PMCID: PMC8507005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogenous hematologic disease that has a poor prognosis. This study aimed to identify new targets for the diagnosis and treatment of AML. The GSE65409 and GSE90062 were selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to identify differentially expressed genes (DEGs). The Database for Annotation, Visualization, and Integrated Discovery was used to perform gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the DEGs. Protein-protein interactions were visualized using the Search Tool for the Retrieval of Interacting Genes, which identified two potential hub genes that encode CDC45 and MCM7. Relative to AML specimens, normal specimens had higher expression levels of CDC45 and MCM7 based on the Gene Expression Omnibus and The Cancer Genome Atlas databases. Furthermore, Pearson's correlation analysis revealed a significant relationship between CDC45 and MCM7. High expression of CDC45 was positively correlated with complete remission and negatively correlated with white blood cell count, hemoglobin concentration, platelet count, and bone marrow blasts. Moreover, high expression of MCM7 was negatively correlated with white blood cell count, hemoglobin concentration, platelet count, bone marrow blasts, and unfavorable cytogenetics. Overexpression of CDC45 increased the expressions of CDC45 and MCM7, while overexpression of MCM7 increased the expression of MCM7 but not CDC45. Overexpression of CDC45 or MCM7 led to impaired AML cell proliferation and blockage at the G1/S phase transition. Overexpression of CDC45 or MCM7 also attenuated the phosphorylation of PI3K, AKT, and mTOR, while simultaneous down-regulation of MCM7 expression abolished the effects of CDC45 overexpression. These findings suggest a functional relationship between CDC45 and MCM7, which might have use in the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, Liaoning Province, People's Republic of China
| | - Zhuogang Liu
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, Liaoning Province, People's Republic of China
| | - Guojun Zhang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Fei L, Ma Y, Zhang M, Liu X, Luo Y, Wang C, Zhang H, Zhang W, Han Y. RACK1 promotes lung cancer cell growth via an MCM7/RACK1/ Akt signaling complex. Oncotarget 2018; 8:40501-40513. [PMID: 28465488 PMCID: PMC5522230 DOI: 10.18632/oncotarget.17120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
MCM7, a member of the miniature chromosome maintenance (MCM) protein family, is crucial for the initiation of DNA replication and proliferation in eukaryotic cells. In this report, we demonstrate that RACK1 regulates cell growth and cell cycle progression in human non-small-cell lung cancer by mediating MCM7 phosphorylation through an MCM7/RACK1/Akt signaling complex. RACK1 functions as a central scaffold that brings Akt into physical proximity with MCM7. Overexpression of RACK1 increases interactions between Akt and MCM7 and promotes Akt-dependent MCM7 phosphorylation, which in turn increases MCM7 binding to chromatin and MCM complex formation. Together, these changes promote DNA replication and cell proliferation. Our findings reveal a novel signaling pathway that regulates growth in non-small cell lung cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Yinan Ma
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Meiyu Zhang
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Xiaofang Liu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Yuan Luo
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Congcong Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Haiyan Zhang
- Department of Pathology, The First People's Hospital of Jining, Shandong 272000, China
| | - Wenzhu Zhang
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Yuchen Han
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
5
|
Zhou C, Chen T, Xie Z, Qin Y, Ou Y, Zhang J, Li S, Chen R, Zhong N. RACK1 forms a complex with FGFR1 and PKM2, and stimulates the growth and migration of squamous lung cancer cells. Mol Carcinog 2017; 56:2391-2399. [PMID: 28418088 DOI: 10.1002/mc.22663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022]
Abstract
Phosphorylation of Pyruvate Kinase M2 (PKM2) on Tyr105 by fibroblast growth factor receptor 1 (FGFR1) has been shown to promote its nuclear localization as well as cell growth in lung cancer. Better understanding the regulation of this process would benefit the clinical treatment for lung cancer. Here, it has been found that the adaptor protein receptor for activated PKC kinase (RACK1) formed a complex with FGFR1 and PKM2, and activated the FGFR1/PKM2 signaling. Knocking down the expression of RACK1 impaired the phosphorylation on Tyr105 of PKM2 and inhibited the growth and migration of lung cancer cells, while over-expression of RACK1 in lung cancer cells led to the resistance to Erdafitinib. Moreover, knocking down the expression of RACK1 impaired the tumorigenesis of lung cancer driven by LKB loss and mutated Ras (KrasG12D). Taken together, our study demonstrated the pivotal roles of RACK1 in FGFR1/PKM2 signaling, suggesting FGFR1/RACK1/PKM2 might be a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yangming Ou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
6
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
7
|
Ma Y, Fei L, Zhang M, Zhang W, Liu X, Wang C, Luo Y, Zhang H, Han Y. Lamin B2 binding to minichromosome maintenance complex component 7 promotes non-small cell lung carcinogenesis. Oncotarget 2017; 8:104813-104830. [PMID: 29285216 PMCID: PMC5739603 DOI: 10.18632/oncotarget.20338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of lamin B2 in non-small cell lung cancer (NSCLC). We detected higher lamin B2 expression in 20 NSCLC tumor tissues obtained from The Cancer Genome Atlas than in adjacent normal lung tissues. LMNB2-RNAi knockdown in A549 and H1299 NSCLC cells inhibited colony formation, cell proliferation and G1-S cell cycle progression while increasing apoptosis. LMNB2 overexpression had the opposite effects. Tumor xenograft experiments showed diminished tumor growth with LMNB2 knockdown H1299 cells than with controls. Yeast two-hybrid studies revealed minichromosome maintenance complex component 7 (MCM7) to be a binding partner of lamin B2, which was confirmed by co-immunoprecipitation and co-localization studies. Lamin B2 binding enhanced DNA binding and helicase activities of MCM7. Deletion analysis with MCM7-N, MCM7-M or MCM7-C mutant proteins showed that lamin B2 binds to the C-terminus of MCM7, and competes with the binding of the tumor suppressor retinoblastoma (RB) protein. Immunohistochemical analysis of 150 NSCLC patient samples revealed that both lamin B2 and MCM7 levels positively correlated with histological grade and tumor TNM stage. Moreover, high lamin B2 and MCM7 levels correlated with shorter overall survival of NSCLC patients. In sum, these results show that lamin B2 interaction with MCM7 promotes NSCLC progression.
Collapse
Affiliation(s)
- Yinan Ma
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Liangru Fei
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Meiyu Zhang
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Wenzhu Zhang
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Xiaofang Liu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Congcong Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Yuan Luo
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Haiyan Zhang
- Department of Pathology, The First People's Hospital of Jining, Shandong, China
| | - Yuchen Han
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China.,Department of Pathology, Shanghai Chest Hospital, Shanghai, China
| |
Collapse
|
8
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
9
|
Transcriptome modifications in human gingival fibroblasts exposed to 2-hydroxyethyl methacrylate. Gene 2016; 582:38-46. [PMID: 26828614 DOI: 10.1016/j.gene.2016.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 02/08/2023]
Abstract
2-Hydroxyethyl methacrylate (HEMA),a tooth filling material, was proven to have toxic effects on different cell types, including human gingival fibroblasts (HGFs), and to be able to influence odontoblast vitality. The aim of the present study was to assess the differential transcriptome modulation induced by low HEMA concentration in cultured HGFs. RNA extracted from cultured HGFs exposed to 3 mmol/l HEMA for 24 or 96 h underwent a whole genome microarray analysis. Data analysis showed the presence of two gene clusters, composed by 310 transcripts differentially expressed after 24- and 96-h HEMA treatment compared to controls. Functional analysis demonstrated that these transcripts are mainly involved in cellular survival and death, and inflammatory response. The study highlighted an overall damage induced by HEMA exposure at both 24 and 96 h, mainly leading to a proliferation impairment. Interestingly, 24-h HEMA treatment seems to induce the cells to trigger repair mechanisms, evidencing an early compensatory response, whereas 96-h incubation appears to cause the occurrence of apoptosis as a consequence of the chronic damage.
Collapse
|
10
|
Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. ACTA ACUST UNITED AC 2015; 35:766-772. [PMID: 26489637 DOI: 10.1007/s11596-015-1505-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/10/2015] [Indexed: 10/22/2022]
Abstract
Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600-1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.
Collapse
|
11
|
Wang Q, Zhou S, Wang JY, Cao J, Zhang X, Wang J, Han K, Cheng Q, Qiu G, Zhao Y, Li X, Qiao C, Li Y, Hou C, Zhang J. RACK1 antagonizes TNF-α-induced cell death by promoting p38 activation. Sci Rep 2015; 5:14298. [PMID: 26381936 PMCID: PMC4585558 DOI: 10.1038/srep14298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) activity has been reported to either promote or suppress cell death, which depends on cell type and stimulus. Our previous report indicates that p38 exerts a protective role in tumor necrosis factor (TNF)-α-induced cell death in L929 fibroblastoma cells. However, key molecules regulating p38 activation remain unclear. Here, we show that ectopic expression of scaffold protein receptor for activated C kinase 1 (RACK1) suppressed TNF-α-induced cell death in L929 cells, which was associated with enhanced p38 activation. Knockdown of endogenous RACK1 expression exhibited opposite effects. The protective role of RACK1 in TNF-α-induced cell death diminished upon blockade of p38 activation. Therefore, RACK1 antagonizes TNF-α-induced cell death through, at least partially, augmenting p38 activation. Further exploration revealed that RACK1 directly bound to MKK3/6 and enhanced the kinase activity of MKK3/6 without affecting MKK3/6 phosphorylation. Similar effects of RACK1 were also observed in primary murine hepatocytes, another cell type sensitive to TNF-α-induced cell death. Taken together, our data suggest that RACK1 is a key factor involved in p38 activation as well as TNF-α-induced cell death.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jing-Yang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Junxia Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xueying Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Kun Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xinying Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chunxia Qiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Yan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chunmei Hou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| |
Collapse
|
12
|
Chen ZH, Yu YP, Michalopoulos G, Nelson J, Luo JH. The DNA replication licensing factor miniature chromosome maintenance 7 is essential for RNA splicing of epidermal growth factor receptor, c-Met, and platelet-derived growth factor receptor. J Biol Chem 2015; 290:1404-1411. [PMID: 25425645 PMCID: PMC4340387 DOI: 10.1074/jbc.m114.622761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/21/2014] [Indexed: 01/07/2023] Open
Abstract
Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221-248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein.
Collapse
Affiliation(s)
| | - Yan P Yu
- From the Departments of Pathology and
| | | | - Joel Nelson
- Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
13
|
Cheng D, Qian W, Wang Y, Meng M, Wei L, Li Z, Kang L, Peng J, Xia Q. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1. PLoS One 2014; 9:e109111. [PMID: 25280016 PMCID: PMC4184850 DOI: 10.1371/journal.pone.0109111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.
Collapse
Affiliation(s)
- Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing, China
| | - Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|