1
|
Roberson JL, Farzaneh C, Neylan CJ, Judy R, Walker V, Damrauer SM, Levin MG, Maguire LH. Genome-Wide Association Study Identifies Genes for Hair Growth and Patterning are Associated With Pilonidal Disease. Dis Colon Rectum 2024; 67:1149-1157. [PMID: 38902823 DOI: 10.1097/dcr.0000000000003308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND Pilonidal sinus disease is a highly morbid condition characterized by the formation of chronic sinus tracts throughout the sacrococcygeal region. Despite its commonality and strong association with family history, no prior investigation of genetic risk factors for pilonidal sinus disease exists. OBJECTIVE To identify genetic risk factors for pilonidal sinus disease. DESIGN A genome-wide association study. SETTINGS The United Kingdom Biobank, FinnGen Biobank, and Penn Medicine BioBank. PATIENTS There were 772,072 participants. MAIN OUTCOME MEASURE Genome-wide significant variants ( p < 5 × 10 -8 ) were mapped to genes using physical distance and gene expression in skin. Genetic correlation between pilonidal sinus disease and morphometric, androgen-driven, and hair phenotypes was estimated with linkage disequilibrium score regression. Finally, a genome-first approach to rare predicted deleterious variants in hair shaft genes TCHH , PADI3 , and TGM3 was conducted for association with pilonidal sinus disease via the Penn Medicine BioBank. RESULTS A genome-wide association study comprising 2835 individuals with pilonidal sinus disease identified 5 genome-wide significant loci, prioritizing HDAC9, TBX15, WARS2, RP11-293M10.1 , PRKAR1B , TWIST1, GPATCH2L, NEK9 , and EIF2B2 , as putative causal genes; several of these genes have known roles in balding and hair patterning. There was a significant correlation between the genetic background of pilonidal sinus disease and the androgen-driven hair traits of male pattern baldness and young age at first facial hair. In a candidate analysis of genes associated with syndromic hair disorders, rare coding variants in TCHH , a monogenic cause of uncombable hair syndrome, were associated with increased prevalence of pilonidal sinus disease (OR 4.81 [95% CI, 2.06-11.2]). LIMITATIONS This study is limited to European ancestry. However, because there is a higher incidence of pilonidal sinus disease in men of European ancestry, this analysis is focused on the at-risk population. CONCLUSIONS Genetic analysis of pilonidal sinus disease identified shared genetic architecture with hair biology and androgen-driven traits. As the first study investigating the genetic basis of pilonidal sinus disease, this provides biological insight into the long-appreciated connection between the disease state, male sex, and hair. See Video abstract. UN ESTUDIO DE ASOCIACIN DEL GENOMA COMPLETO IDENTIFICA GENES DEL CRECIMIENTO Y EL PATRN DEL PELO ASOCIADOS A LA ENFERMEDAD PILONIDAL ANTECEDENTES:La enfermedad del seno pilonidal es una condición muy mórbida caracterizada por la formación de tractos sinusales crónicos en toda la región sacrococcígea. A pesar de su frecuencia y su fuerte asociación con los antecedentes familiares, no se han investigado previamente los factores de riesgo genéticos de la enfermedad sinusal pilonidal.OBJETIVO:Identificar factores genéticos de riesgo para la enfermedad del seno pilonidal.DISEÑO:Estudio de asociación de genoma completo.CONJUNTOS:Biobanco del Reino Unido, Biobanco FinnGen y Biobanco PennMedicine.PACIENTES:772.072 participantes.MEDIDA DE RESULTADO PRINCIPAL:Las variantes significativas en todo el genoma (p < 5x10-8) se asignaron a genes utilizando la distancia física y la expresión génica en la piel. La correlación genética entre la enfermedad del seno pilonidal y los fenotipos morfométricos, androgénicos y de cabello se estimó con regresión de puntuación LD. Por último, se realizó una aproximación genómica a variantes deletéreas raras predichas en los genes del tallo piloso TCHH, PADI3 y TGM3 para su asociación con la enfermedad del seno pilonidal a través del Biobanco PennMedicine.RESULTADOS:El estudio de asociación de todo el genoma, que incluyó a 2.835 individuos con enfermedad del seno pilonidal, identificó 5 loci significativos en todo el genoma, dando prioridad a HDAC9, TBX15, WARS2, RP11-293M10.1, PRKAR1B, TWIST1, GPATCH2L, NEK9 y EIF2B2, como genes causales putativos; varios de estos genes tienen funciones conocidas en la calvicie y el patrón del cabello. Se observó una correlación significativa entre los antecedentes genéticos de la enfermedad del seno pilonidal y los de los rasgos calvicie de patrón masculino y edad temprana del primer vello facial impulsados por andrógenos. En un análisis de genes candidatos asociados a trastornos capilares sindrómicos, las variantes raras de codificación en TCHH, una causa monogénica del síndrome capilar incombustible, se asociaron a una mayor prevalencia de la enfermedad del seno pilonidal (OR 4,81 [IC del 5%, 2,06-11,2]).LIMITACIONES:Este estudio se limita a la ascendencia europea. Sin embargo, debido a que hay una mayor incidencia de la enfermedad sinusal pilonidal en los hombres de ascendencia europea, este análisis se centra en la población de riesgo.CONCLUSIÓN:El análisis genético de la enfermedad del seno pilonidal identificó una arquitectura genética compartida con la biología del cabello y los rasgos impulsados por andrógenos. Siendo el primer estudio que investiga las bases genéticas de la enfermedad del seno pilonidal, esto proporciona una visión biológica de la conexión, apreciada desde hace tiempo, entre el estado de la enfermedad, el sexo masculino y el cabello. (Traducción-Dr. Aurian Garcia Gonzalez ).
Collapse
Affiliation(s)
- Jeffrey L Roberson
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cyrus Farzaneh
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Division of Colon and Rectal Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher J Neylan
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Renae Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Venexia Walker
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Surgery, Corporal Michael J. Crescenz Memorial Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lillias H Maguire
- Division of Colon and Rectal Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Surgery, Corporal Michael J. Crescenz Memorial Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Yu X, Xu J. TWIST1 Drives Cytotoxic CD8+ T-Cell Exhaustion through Transcriptional Activation of CD274 (PD-L1) Expression in Breast Cancer Cells. Cancers (Basel) 2024; 16:1973. [PMID: 38893094 PMCID: PMC11171171 DOI: 10.3390/cancers16111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
In breast cancer, epithelial-mesenchymal transition (EMT) is positively associated with programmed death ligand 1 (PD-L1) expression and immune escape, and TWIST1 silences ERα expression and induces EMT and cancer metastasis. However, how TWIST1 regulates PD-L1 and immune evasion is unknown. This study analyzed TWIST1 and PD-L1 expression in breast cancers, investigated the mechanism for TWIST1 to regulate PD-L1 transcription, and assessed the effects of TWIST1 and PD-L1 in cancer cells on cytotoxic CD8+ T cells. Interestingly, TWIST1 expression is correlated with high-level PD-L1 expression in ERα-negative breast cancer cells. The overexpression and knockdown of TWIST1 robustly upregulate and downregulate PD-L1 expression, respectively. TWIST1 binds to the PD-L1 promoter and recruits the TIP60 acetyltransferase complex in a BRD8-dependent manner to transcriptionally activate PD-L1 expression, which significantly accelerates the exhaustion and death of the cytotoxic CD8+ T cells. Accordingly, knockdown of TWIST1 or BRD8 or inhibition of PD-L1 significantly enhances the tumor antigen-specific CD8+ T cells to suppress the growth of breast cancer cells. These results demonstrate that TWIST1 directly induces PD-L1 expression in ERα-negative breast cancer cells to promote immune evasion. Targeting TWIST1, BRD8, and/or PD-L1 in ERα-negative breast cancer cells with TWIST1 expression may sensitize CD8+ T-cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yu X, He T, Tong Z, Liao L, Huang S, Fakhouri WD, Edwards DP, Xu J. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis. EMBO Rep 2023; 24:e56902. [PMID: 37680145 PMCID: PMC10626429 DOI: 10.15252/embr.202356902] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
TWIST1 induces epithelial-to-mesenchymal transition (EMT) to drive cancer metastasis. It is yet unclear what determines TWIST1 functions to activate or repress transcription. We found that the TWIST1 N-terminus antagonizes TWIST1-regulated gene expression, cancer growth and metastasis. TWIST1 interacts with both the NuRD complex and the NuA4/TIP60 complex (TIP60-Com) via its N-terminus. Non-acetylated TWIST1-K73/76 selectively interacts with and recruits NuRD to repress epithelial target gene transcription. Diacetylated TWIST1-acK73/76 binds BRD8, a component of TIP60-Com that also binds histone H4-acK5/8, to recruit TIP60-Com to activate mesenchymal target genes and MYC. Knockdown of BRD8 abolishes TWIST1 and TIP60-Com interaction and TIP60-Com recruitment to TWIST1-activated genes, resulting in decreasing TWIST1-activated target gene expression and cancer metastasis. Both TWIST1/NuRD and TWIST1/TIP60-Com complexes are required for TWIST1 to promote EMT, proliferation, and metastasis at full capacity. Therefore, the diacetylation status of TWIST1-K73/76 dictates whether TWIST1 interacts either with NuRD to repress epithelial genes, or with TIP60-Com to activate mesenchymal genes and MYC. Since BRD8 is essential for TWIST1-acK73/76 and TIP60-Com interaction, targeting BRD8 could be a means to inhibit TWIST1-activated gene expression.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Tao He
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Present address:
Institute for Cancer MedicineSouthwest Medical UniversitySichuanChina
| | - Zhangwei Tong
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Lan Liao
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Shixia Huang
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of DentistryUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Dean P Edwards
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Jianming Xu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
4
|
Khalid Z, Coco S, Ullah N, Pulliero A, Cortese K, Varesano S, Orsi A, Izzotti A. Anticancer Activity of Measles-Mumps-Rubella MMR Vaccine Viruses against Glioblastoma. Cancers (Basel) 2023; 15:4304. [PMID: 37686579 PMCID: PMC10486717 DOI: 10.3390/cancers15174304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.
Collapse
Affiliation(s)
- Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Simona Coco
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Nadir Ullah
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Serena Varesano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Zhang H, Wang Y, Chen X, Zhang A, Hou L, Hong J, Liu J, Liu Z, Yang P. Targeting epithelial cell-derived TWIST1 alleviates allergic asthma. Cell Signal 2023; 102:110552. [PMID: 36481410 DOI: 10.1016/j.cellsig.2022.110552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
It is well known that the T Helper (Th)2 bias plays a critical role in allergic asthma. Whereas the Th2 bias is maintained in the local tissues is uncertain. IL-33 is vital for the development of the Th2 polarization. TWIST-1 has an effect on regulating cellular functions. The aberrant activation of RAS sustains certain cellular activities. The aim of this study is to study the role of the interaction between activation of TWIST1 and RAS in inducing and maintaining Th2 polarization in allergic asthma. The epithelial cells of the airways (AEC) were isolated from the broncho-alveolar lavage fluids in patients with asthma. The mediators involved in the over-expression of IL-33 were determined by RNA sequencing. A mouse model was established to test the role of TWIST1 and RAS in developing allergic asthma. We observed a strong expression of TWIST1 in patients with allergic asthma that showed a positive correlation with asthmatic responses. TWIST1 favored the expression of the IL-33 in the AEC. Twist1-deficient AEC-carrying mice did not induce Th2 polarization in the airways. The expression TWIST1 in AECs was positively associated with RAS activation in AECs in patients with allergic asthma. The interaction between RAS and TWIST1 in AECs sustained airway allergic inflammation. Inhibition of TWIST1 or RAS prevented asthma-like inflammation in the mouse airways. In summary, the interaction between TWIST1 and RAS induces and maintains IL-33 expression in AECs to facilitate allergic inflammation in the respiratory tract. Inhibition of TWIST1 or RAS can prevent experimental allergic asthma.
Collapse
Affiliation(s)
- Huanping Zhang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanfen Wang
- Department of Pediatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoxue Chen
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Aizhi Zhang
- Department of Critical care medicine, Second Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Lijun Hou
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jingyi Hong
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; State Key Laboratory of Respiratory Disease Allergy Shenzhen University Division, Shenzhen, China; Guangdong Provincial Standardization Allergen Engineering Research Center, Shenzhen, China; Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen, China
| | - Jiangqi Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China.
| | - Zhiqiang Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China.
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; State Key Laboratory of Respiratory Disease Allergy Shenzhen University Division, Shenzhen, China; Guangdong Provincial Standardization Allergen Engineering Research Center, Shenzhen, China; Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen, China.
| |
Collapse
|
6
|
Song H, Zhao XB, Chu QS, Zhang J, Gao L, Liao XH. Expression dynamics of lymphoid enhancer-binding factor 1 in terminal Schwann cells, dermal papilla, and interfollicular epidermis. Dev Dyn 2022; 252:527-535. [PMID: 36576725 DOI: 10.1002/dvdy.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transcription factor lymphoid enhancer-binding factor 1 (LEF1) is a downstream mediator of the Wnt/β-catenin signaling pathway. It is expressed in dermal papilla and surrounding cells in the hair follicle, promoting cell proliferation, and differentiation. RESULTS Here, we report that LEF1 is also expressed all through the hair cycle in the terminal Schwann cells (TSCs), a component of the lanceolate complex located at the isthmus. The timing of LEF1 appearance at the isthmus coincides with that of hair follicle innervation. LEF1 is not found at the isthmus in the aberrant hair follicles in nude mice. Instead, LEF1 in TSCs is found in the de novo hair follicles reconstituted on nude mice by stem cells chamber graft assay. Cutaneous denervation experiment demonstrates that the LEF1 expression in TSCs is independent of nerve endings. At last, LEF1 expression in the interfollicular epidermis during the early stage of skin development is significantly suppressed in transgenic mice with T-cell factor 3 (TCF3) overexpression. CONCLUSION We reveal the expression dynamics of LEF1 in skin during development and hair cycle. LEF1 expression in TSCs indicates that the LEF1/Wnt signal might help to establish a niche at the isthmus region for the lanceolate complex, the bulge stem cells and other neighboring cells.
Collapse
Affiliation(s)
- Hongzhi Song
- School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qing-Song Chu
- School of Life Sciences, Shanghai University, Shanghai, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyu Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Takeda T, Tsubaki M, Matsuda T, Kimura A, Jinushi M, Obana T, Takegami M, Nishida S. EGFR inhibition reverses epithelial‑mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol Rep 2022; 47:109. [PMID: 35445730 DOI: 10.3892/or.2022.8320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/30/2022] [Indexed: 11/05/2022] Open
Abstract
Tamoxifen resistance remains a major obstacle in the treatment of estrogen receptor (ER)‑positive breast cancer. In recent years, the crucial role of the epithelial‑mesenchymal transition (EMT) process in the development of drug resistance in breast cancer has been underlined. However, the central molecules inducing the EMT process during the development of tamoxifen resistance remain to be elucidated. In the present study, it was demonstrated that tamoxifen‑resistant breast cancer cells underwent EMT and exhibited an enhanced cell motility and invasive behavior. The inhibition of snail family transcriptional repressor 1 (Snail) and twist family BHLH transcription factor 1 (Twist) reversed the EMT phenotype and decreased the tamoxifen resistance, migration and invasion of tamoxifen‑resistant breast cancer cells. In addition, it was observed that the inhibition of epidermal growth factor receptor (EGFR) reversed the EMT phenotype in tamoxifen‑resistant MCF7 (MCF‑7/TR) cells via the downregulation of Snail and Twist. Notably, the EGFR inhibitor, gefitinib, decreased tamoxifen resistance, migration and invasion through the inhibition of Snail and Twist. On the whole, the results of the present study suggest that EGFR may be a promising therapeutic target for tamoxifen‑resistant breast cancer. Moreover, it was suggested that gefitinib may serve as a potent novel therapeutic strategy for breast cancer patients, who have developed tamoxifen resistance.
Collapse
Affiliation(s)
- Tomoya Takeda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Masanobu Tsubaki
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Takuya Matsuda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Akihiro Kimura
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Minami Jinushi
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Teruki Obana
- Department of Pharmacy, Kindai University Hospital, Osakasayama, Osaka 589‑8511, Japan
| | - Manabu Takegami
- Department of Pharmacy, Kindai University Hospital, Osakasayama, Osaka 589‑8511, Japan
| | - Shozo Nishida
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| |
Collapse
|
8
|
Martinez JD, Mo Q, Xu Y, Qin L, Li Y, Xu J. Common Genomic Aberrations in Mouse and Human Breast Cancers with Concurrent P53 Deficiency and Activated PTEN-PI3K-AKT Pathway. Int J Biol Sci 2022; 18:229-241. [PMID: 34975329 PMCID: PMC8692138 DOI: 10.7150/ijbs.65763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Simultaneous P53 loss and activation of the PTEN-restricted PI3K-AKT pathway frequently occur in aggressive breast cancers. P53 loss causes genome instability, while PTEN loss and/or activating mutations of PIK3CA and AKT promote cancer cell proliferation that also increases incidences of genomic aberrations. However, the genomic alterations associated with P53 loss and activated PTEN-PI3K-AKT signaling in breast cancer have not been defined. Spatiotemporally controlled breast cancer models with inactivation of both P53 and Pten in adult mice have not been established for studying genomic alterations. Herein, we deleted both floxed Pten and Tp53 genes in the mammary gland epithelial cells in adult mice using a RCAS virus-mediated Cre-expressing system. These mice developed small tumors in 21 weeks, and poorly differentiated larger tumors in 26 weeks. In these tumors, we identified 360 genes mutated by nonsynonymous point mutations and small insertions and deletions (NSPMs/InDels), 435 genes altered by copy number amplifications (CNAs), and 450 genes inactivated by copy number deletions (CNDs). Importantly, 22.2%, 75.9% and 27.3% of these genes were also altered in human breast tumors with P53 and PTEN losses or P53 loss and activated PI3K-AKT signaling by NSPMs/InDels, CNAs and CNDs, respectively. Therefore, inactivation of P53 and Pten in adult mice causes rapid-growing breast tumors, and these tumors recapitulate a significant number of genetic aberrations in human breast tumors with inactivated P53 and activated PTEN-PI3K-AKT signaling. Further characterization of these commonly altered genes in breast cancer should help to identify novel cancer-driving genes and molecular targets for developing therapeutics.
Collapse
Affiliation(s)
- Jarrod D Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Qianxing Mo
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Yixiang Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Yi Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
Yu X, Xu J. A 'Goldmine' for digging cancer-specific targets: the genes essential for embryo development but non-essential for adult life. J Mol Cell Biol 2021; 12:669-673. [PMID: 32470104 PMCID: PMC7749735 DOI: 10.1093/jmcb/mjaa024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Liu C, Mo LH, Feng BS, Jin QR, Li Y, Lin J, Shu Q, Liu ZG, Liu Z, Sun X, Yang PC. Twist1 contributes to developing and sustaining corticosteroid resistance in ulcerative colitis. Am J Cancer Res 2021; 11:7797-7812. [PMID: 34335965 PMCID: PMC8315068 DOI: 10.7150/thno.62256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Rationale: Corticosteroid resistance (CR) is a serious drawback to steroid therapy in patients with ulcerative colitis (UC); the underlying mechanism is incompletely understood. Twist1 protein (TW1) is an apoptosis inhibitor and has immune regulatory functions. This study aims to elucidate the roles of TW1 in inducing and sustaining the CR status in UC. Methods: Surgically removed colon tissues of patients with ulcerative colitis (UC) were collected, from which neutrophils were isolated by flow cytometry. The inflammation-related gene activities in neutrophils were analyzed by RNA sequencing. A CR colitis mouse model was developed with the dextran sulfate sodium approach in a hypoxia environment. Results: Higher TW1 gene expression was detected in neutrophils isolated from the colon tissues of UC patients with CR and the CR mouse colon tissues. TW1 physically interacted with glucocorticoid receptor (GR)α in CR neutrophils that prevented GRα from interacting with steroids; which consequently abrogated the effects of steroids on regulating the cellular activities of neutrophils. STAT3 (Signal Transducer and Activator of Transcription-3) interacted with Ras protein activator like 1 to sustain the high TW1 expression in colon mucosal neutrophils of CR patients and CR mice. Inhibition of TW1 restored the sensitivity to corticosteroid of neutrophils in the colon tissues of a CR murine model. Conclusions: UC patients at CR status showed high TW1 expression in neutrophils. TW1 prevented steroids from regulating neutrophil activities. Inhibition of TW1 restored the sensitivity to corticosteroids in the colon tissues at the CR status.
Collapse
|
11
|
Ertosun MG, PehlİvanoĞlu S, DİlmaÇ S, TanriÖver G, ÖzeŞ ON. AKT-mediated phosphorylation of TWIST1 is essential for breast cancer cell metastasis. ACTA ACUST UNITED AC 2020; 44:158-165. [PMID: 32922123 PMCID: PMC7478131 DOI: 10.3906/biy-1912-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, it was shown that human TWIST1 (basic helix-loop-helix (b-HLH) is phosphorylated by Akt kinase at S42, T121, and S123. To show in vivo effect of these phosphorylations, we created mouse TWIST1 expression vector and converted the codons of S42, T125, and S127 to unphosphorylatable alanine and phosphorylation mimicking Glutamic acid. We hypothesized that alanine mutants would inhibit the metastatic ability of 4T1 cells while glutamic acid mutants would convert nonmetastatic 67NR cells into metastatic phenotype. To confirm this hypothesis, we created metastatic 4T1 and nonmetastatic 67NR cells expressing alanine mutants and glutamic acid mutants mouse TWIST1, respectively. Then, we injected 1 × 106 67NR and 1 × 105 4T1 cells overexpressing mutants of TWIST1 into the breast tissue of BALB/c mice. At the end of the 4th week, we sacrificed the animals, determined the numbers of tumors at lungs and liver. Although 67NR cells overexpressing wild-type TWIST1 did not show any metastasis, cells overexpressing S42E and T125E mutants showed 15–30 macroscopic metastasis to liver and lungs. Parallel to this, 4T1 cells expressing S42A and T125A mutants of TWIST1 showed no macroscopic metastasis. Our results indicate that phosphorylation of S42 and T125 by AKT is essential for TWIST1-mediated tumor growth and metastasis.
Collapse
Affiliation(s)
- Mustafa Gökhan Ertosun
- Department Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Suray PehlİvanoĞlu
- Department of Molecular Biology, Faculty of Science, Necmettin Erbakan University, Konya Turkey
| | - Sayra DİlmaÇ
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Gamze TanriÖver
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | | |
Collapse
|
12
|
Razzaque MS, Atfi A. Regulatory Role of the Transcription Factor Twist1 in Cancer-Associated Muscle Cachexia. Front Physiol 2020; 11:662. [PMID: 32655411 PMCID: PMC7324683 DOI: 10.3389/fphys.2020.00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Muscle cachexia is a catabolic response, usually takes place in various fatal diseases, such as sepsis, burn injury, and chronic kidney disease. Muscle cachexia is also a common co-morbidity seen in the vast majority of advanced cancer patients, often associated with low quality of life and death due to general organ dysfunction. The triggering events and underlying molecular mechanisms of muscle wasting are not yet clearly defined. Our recent study has shown that the ectopic expression of Twist1 in muscle progenitor cells is sufficient to drive muscle structural protein breakdown and attendant muscle atrophy, reminiscent of muscle cachexia. Intriguingly, muscle Twist1 expression is highly induced in cachectic muscles from several mouse models of pancreatic ductal adenocarcinoma (PDAC), raising the interesting possibility that Twist1 may mediate PDAC-driven muscle cachexia. Along these lines, both genetic and pharmacological inactivation of Twist1 function was highly significant at protecting against cancer cachexia, which translated into a significant survival benefit in the experimental PDAC animals. From a translational perspective, elevated expression of Twist1 is also detected in cancer patients with severe muscle wasting, implicating a role of Twist1 in cancer cachexia, and further providing a possible target for therapeutic attenuation of cachexia to improve cancer patient survival. In this article, we will briefly summarize how Twist1 acts as a master regulator of tumor-induced cachexia, and discuss the relevance of our findings to muscle wasting diseases in general. The mechanism of decreased muscle mass in various catabolic conditions is thought to rely on similar pathways, and, therefore, Twist1-induced cancer cachexia may benefit diverse groups of patients with clinical complications associated with loss of muscle mass and functions, beyond the expected benefits for cancer patients.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
13
|
Villani RM, Johnson A, Galbraith JA, Baz B, Handoko HY, Walker GJ, Khosrotehrani K. Murine dorsal hair type is genetically determined by polymorphisms in candidate genes that influence BMP and WNT signalling. Exp Dermatol 2020; 29:450-461. [PMID: 32145039 DOI: 10.1111/exd.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
Mouse dorsal coat hair types, guard, awl, auchene and zigzag, develop in three consecutive waves. To date, it is unclear if these hair types are determined genetically through expression of specific factors or can change based on their mesenchymal environment. We undertook a novel approach to this question by studying individual hair type in 67 Collaborative Cross (CC) mouse lines and found significant variation in the proportion of each type between strains. Variation in the proportion of zigzag, awl and auchene, but not guard hair, was largely due to germline genetic variation. We utilised this variation to map a quantitative trait locus (QTL) on chromosome 12 that appears to influence a decision point switch controlling the propensity for either second (awl and auchene) or third wave (zigzag) hairs to develop. This locus contains two strong candidates, Sostdc1 and Twist1, each of which carry several ENCODE regulatory variants, specific to the causal allele, that can influence gene expression, are expressed in the developing hair follicle, and have been previously reported to be involved in regulating human and murine hair behaviour, but not hair subtype determination. Both of these genes are likely to play a part in hair type determination via regulation of BMP and/or WNT signalling.
Collapse
Affiliation(s)
- Rehan M Villani
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ayaka Johnson
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jack A Galbraith
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Betoul Baz
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Herlina Y Handoko
- QIMRBerghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - Graeme J Walker
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Georgess D, Padmanaban V, Sirka OK, Coutinho K, Choi A, Frid G, Neumann NM, Inoue T, Ewald AJ. Twist1-Induced Epithelial Dissemination Requires Prkd1 Signaling. Cancer Res 2019; 80:204-218. [PMID: 31676574 DOI: 10.1158/0008-5472.can-18-3241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Dissemination is an essential early step in metastasis but its molecular basis remains incompletely understood. To define the essential targetable effectors of this process, we developed a 3D mammary epithelial culture model, in which dissemination is induced by overexpression of the transcription factor Twist1. Transcriptomic analysis and ChIP-PCR together demonstrated that protein kinase D1 (Prkd1) is a direct transcriptional target of Twist1 and is not expressed in the normal mammary epithelium. Pharmacologic and genetic inhibition of Prkd1 in the Twist1-induced dissemination model demonstrated that Prkd1 was required for cells to initiate extracellular matrix (ECM)-directed protrusions, release from the epithelium, and migrate through the ECM. Antibody-based protein profiling revealed that Prkd1 induced broad phosphorylation changes, including an inactivating phosphorylation of β-catenin and two microtubule depolymerizing phosphorylations of Tau, potentially explaining the release of cell-cell contacts and persistent activation of Prkd1. In patients with breast cancer, TWIST1 and PRKD1 expression correlated with metastatic recurrence, particularly in basal breast cancer. Prkd1 knockdown was sufficient to block dissemination of both murine and human mammary tumor organoids. Finally, Prkd1 knockdown in vivo blocked primary tumor invasion and distant metastasis in a mouse model of basal breast cancer. Collectively, these data identify Prkd1 as a novel and targetable signaling node downstream of Twist1 that is required for epithelial invasion and dissemination. SIGNIFICANCE: Twist1 is a known regulator of metastatic cell behaviors but not directly targetable. This study provides a molecular explanation for how Twist1-induced dissemination works and demonstrates that it can be targeted. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/2/204/F1.large.jpg.
Collapse
Affiliation(s)
- Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Orit Katarina Sirka
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kester Coutinho
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex Choi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriela Frid
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cancer Invasion and Metastasis Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
α-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene 2019; 38:4856-4874. [PMID: 30804457 DOI: 10.1038/s41388-019-0762-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Identification of molecular alterations driving breast cancer progression is critical for the development of effective therapy. In this study, we show that the level of α-parvin is elevated in triple-negative breast cancer cells. The depletion of α-parvin from triple-negative breast cancer cells effectively inhibits breast cancer cell growth, migration, and invasion in vitro, and tumor progression and metastasis in vivo. At the molecular level, we identify Ras-GTPase-activing protein SH3-domain-binding protein 2 (G3BP2) as an α-parvin-binding protein. Knockdown of α-parvin promotes G3BP2 interaction with TWIST1, increases ubiquitination and proteasome-dependent degradation of TWIST1, and consequently reduces the cellular level of TWIST1 and its downstream signaling. Importantly, the depletion of G3BP2 reverses the reduction in the level and signaling of TWIST1 and the suppression of breast cancer progression induced by the loss of α-parvin. Furthermore, the re-expression of an α-parvin mutant in which the G3BP2-binding site is ablated, unlike that of wild-type α-parvin, in α-parvin-deficient breast cancer cells, is unable to restore the level and signaling of TWIST1 and promote breast cancer progression. Finally, we show that protein level of α-parvin is highly positively correlated with that of TWIST1 in human triple-negative breast cancer patients. Our studies reveal a novel signaling pathway consisting of α-parvin, G3BP2, and TWIST1 that regulates breast cancer progression and metastasis, and suggest that the activation of this signaling pathway is a key factor for driving the progression and poor clinical outcome of human ER-negative breast cancer.
Collapse
|
16
|
Yeo SY, Lee KW, Shin D, An S, Cho KH, Kim SH. A positive feedback loop bi-stably activates fibroblasts. Nat Commun 2018; 9:3016. [PMID: 30069061 PMCID: PMC6070563 DOI: 10.1038/s41467-018-05274-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/18/2018] [Indexed: 01/12/2023] Open
Abstract
Although fibroblasts are dormant in normal tissue, they exhibit explosive activation during wound healing and perpetual activation in pathologic fibrosis and cancer stroma. The key regulatory network controlling these fibroblast dynamics is still unknown. Here, we report that Twist1, a key regulator of cancer-associated fibroblasts, directly upregulates Prrx1, which, in turn, increases the expression of Tenascin-C (TNC). TNC also increases Twist1 expression, consequently forming a Twist1-Prrx1-TNC positive feedback loop (PFL). Systems biology studies reveal that the Twist1-Prrx1-TNC PFL can function as a bistable ON/OFF switch and regulates fibroblast activation. This PFL can be irreversibly activated under pathologic conditions, leading to perpetual fibroblast activation. Sustained activation of the Twist1-Prrx1-TNC PFL reproduces fibrotic nodules similar to idiopathic pulmonary fibrosis in vivo and is implicated in fibrotic disease and cancer stroma. Considering that this PFL is specific to activated fibroblasts, Twist1-Prrx1-TNC PFL may be a fibroblast-specific therapeutic target to deprogram perpetually activated fibroblasts.
Collapse
Affiliation(s)
- So-Young Yeo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Keun-Woo Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sugyun An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Seok-Hyung Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea. .,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwona, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
17
|
Parajuli P, Kumar S, Loumaye A, Singh P, Eragamreddy S, Nguyen TL, Ozkan S, Razzaque MS, Prunier C, Thissen JP, Atfi A. Twist1 Activation in Muscle Progenitor Cells Causes Muscle Loss Akin to Cancer Cachexia. Dev Cell 2018; 45:712-725.e6. [PMID: 29920276 PMCID: PMC6054474 DOI: 10.1016/j.devcel.2018.05.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 12/11/2017] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is characterized by extreme skeletal muscle loss that results in high morbidity and mortality. The incidence of cachexia varies among tumor types, being lowest in sarcomas, whereas 90% of pancreatic ductal adenocarcinoma (PDAC) patients experience severe weight loss. How these tumors trigger muscle depletion is still unfolding. Serendipitously, we found that overexpression of Twist1 in mouse muscle progenitor cells, either constitutively during development or inducibly in adult animals, caused severe muscle atrophy with features reminiscent of cachexia. Using several genetic mouse models of PDAC, we detected a marked increase in Twist1 expression in muscle undergoing cachexia. In cancer patients, elevated levels of Twist1 are associated with greater degrees of muscle wasting. Finally, both genetic and pharmacological inactivation of Twist1 in muscle progenitor cells afforded substantial protection against cancer-mediated cachexia, which translated into meaningful survival benefits, implicating Twist1 as a possible target for attenuating muscle cachexia in cancer patients.
Collapse
Affiliation(s)
- Parash Parajuli
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Santosh Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Audrey Loumaye
- Endocrinology, Diabetology, and Nutrition Department, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Purba Singh
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sailaja Eragamreddy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thien Ly Nguyen
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Seval Ozkan
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mohammed S Razzaque
- Department of Applied Oral Sciences, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
| | - Céline Prunier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris 75012, France
| | - Jean-Paul Thissen
- Endocrinology, Diabetology, and Nutrition Department, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Azeddine Atfi
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris 75012, France.
| |
Collapse
|
18
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proc Natl Acad Sci U S A 2017; 114:11494-11499. [PMID: 29073077 DOI: 10.1073/pnas.1618091114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twist1 is an epithelial-mesenchymal transition (EMT)-inducing transcription factor (TF) that promotes cell migration and invasion. To determine the intrinsic role of Twist1 in EMT and breast cancer initiation, growth, and metastasis, we developed mouse models with an oncogene-induced mammary tumor containing wild-type (WT) Twist1 or tumor cell-specific Twist1 knockout (Twist1TKO). Twist1 knockout showed no effects on tumor initiation and growth. In both models with early-stage tumor cells, Twist1, and mesenchymal markers were not expressed, and lung metastasis was absent. Twist1 expression was detected in ∼6% of the advanced WT tumor cells. Most of these Twist1+ cells coexpressed several other EMT-inducing TFs (Snail, Slug, Zeb2), lost ERα and luminal marker K8, acquired basal cell markers (K5, p63), and exhibited a partial EMT plasticity (E-cadherin+/vimentin+). In advanced Twist1TKO tumor cells, Twist1 knockout largely diminished the expression of the aforementioned EMT-inducing TFs and basal and mesenchymal markers, but maintained the expression of the luminal markers. Circulating tumor cells (CTCs) were commonly detected in mice with advanced WT tumors, but not in mice with advanced Twist1TKO tumors. Nearly all WT CTCs coexpressed Twist1 with other EMT-inducing TFs and both epithelial and mesenchymal markers. Mice with advanced WT tumors developed extensive lung metastasis consisting of luminal tumor cells with silenced Twist1 and mesenchymal marker expression. Mice with advanced Twist1TKO tumors developed very little lung metastasis. Therefore, Twist1 is required for the expression of other EMT-inducing TFs in a small subset of tumor cells. Together, they induce partial EMT, basal-like tumor progression, intravasation, and metastasis.
Collapse
|
20
|
Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, Mo Q, Liao L, Xu J. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 2017; 36:1157-1166. [PMID: 27524420 PMCID: PMC5311074 DOI: 10.1038/onc.2016.286] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/12/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
The heterogeneous breast cancers can be classified into different subtypes according to their histopathological characteristics and molecular signatures. Foxa1 expression is linked with luminal breast cancer (LBC) with good prognosis, whereas Twist1 expression is associated with basal-like breast cancer (BLBC) with poor prognosis owing to its role in promoting epithelial-to-mesenchymal transition (EMT), invasiveness and metastasis. However, the regulatory and functional relationships between Twist1 and Foxa1 in breast cancer progression are unknown. In this study, we demonstrate that in the estrogen receptor (ERα)-positive LBC cells Twist1 silences Foxa1 expression, which has an essential role in relieving Foxa1-arrested migration, invasion and metastasis of breast cancer cells. Mechanistically, Twist1 binds to Foxa1 proximal promoter and recruits the NuRD transcriptional repressor complex to de-acetylate H3K9 and repress RNA polymerase II recruitment. Twist1 also silences Foxa1 promoter by inhibiting AP-1 recruitment. Twist1 expression in MCF7 cells silenced Foxa1 expression, which was concurrent with the induction of EMT, migration, invasion and metastasis of these cells. Importantly, restored Foxa1 expression in these cells largely inhibited Twist1-promoted migration, invasion and metastasis. Restored Foxa1 expression did not change the Twist1-induced mesenchymal cellular morphology and the expression of Twist1-regulated E-cadherin, β-catenin, vimentin and Slug, but it partially rescued Twist1-silenced ERα and cytokeratin 8 expression and reduced Twist1-induced integrin α5, integrin β1 and MMP9 expression. In a xenografted mouse model, restored Foxa1 also increased Twist1-repressed LBC markers and decreased Twist1-induced BLBC markers. Furthermore, Twist1 expression is negatively correlated with Foxa1 in the human breast tumors. The tumors with high Twist1 and low Foxa1 expressions are associated with poor distant metastasis-free survival. These results demonstrate that Twist1's silencing effect on Foxa1 expression is largely responsible for Twist1-induced migration, invasion and metastasis, but less responsible for Twist1-induced mesenchymal morphogenesis and expression of certain EMT markers.
Collapse
Affiliation(s)
- Yixiang Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Li Qin
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tong Sun
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Hongmei Wu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tao He
- Institution for Cancer Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Institution for Cancer Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qianxing Mo
- Dan L. Duncan Cancer Center and Department of Medicine-Hematology/Oncology, Baylor College of Medicine, Houston, Texas
| | - Lan Liao
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Institution for Cancer Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Chen L, Miteva M. SnapshotDx Quiz: August 2016. J Invest Dermatol 2016; 136:e83. [PMID: 30477662 DOI: 10.1016/j.jid.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucy Chen
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
22
|
Heilmann-Heimbach S, Hochfeld LM, Paus R, Nöthen MM. Hunting the genes in male-pattern alopecia: how important are they, how close are we and what will they tell us? Exp Dermatol 2016; 25:251-7. [DOI: 10.1111/exd.12965] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Heilmann-Heimbach
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Lara M. Hochfeld
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus M. Nöthen
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| |
Collapse
|
23
|
Differential Expression between Human Dermal Papilla Cells from Balding and Non-Balding Scalps Reveals New Candidate Genes for Androgenetic Alopecia. J Invest Dermatol 2016; 136:1559-1567. [PMID: 27060448 DOI: 10.1016/j.jid.2016.03.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022]
Abstract
Androgenetic alopecia (AGA) is a common heritable and androgen-dependent hair loss condition in men. Twelve genetic risk loci are known to date, but it is unclear which genes at these loci are relevant for AGA. Dermal papilla cells (DPCs) located in the hair bulb are the main site of androgen activity in the hair follicle. Widely used monolayer-cultured primary DPCs in hair-related studies often lack dermal papilla characteristics. In contrast, immortalized DPCs have high resemblance to intact dermal papilla. We derived immortalized human DPC lines from balding (BAB) and non-balding (BAN) scalp. Both BAB and BAN retained high proportions of dermal papilla signature gene and versican protein expression. We performed expression analysis of BAB and BAN and annotated AGA risk loci with differentially expressed genes. We found evidence for AR but not EDA2R as the candidate gene at the AGA risk locus on chromosome X. Further, our data suggest TWIST1 (twist family basic helix-loop-helix transcription factor 1) and SSPN (sarcospan) to be the functionally relevant AGA genes at the 7p21.1 and 12p12.1 risk loci, respectively. Down-regulated genes in BAB compared to BAN were highly enriched for vasculature-related genes, suggesting that deficiency of DPC from balding scalps in fostering vascularization around the hair follicle may contribute to the development of AGA.
Collapse
|
24
|
Meng T, Huang Y, Wang S, Zhang H, Dechow PC, Wang X, Qin C, Shi B, D'Souza RN, Lu Y. Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation. J Biol Chem 2015; 290:29593-602. [PMID: 26487719 DOI: 10.1074/jbc.m115.680546] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 02/05/2023] Open
Abstract
Twist1 is a basic helix-loop-helix-containing transcription factor that is expressed in the dental mesenchyme during the early stages of tooth development. To better delineate its roles in tooth development, we generated Twist1 conditional knockout embryos (Twist2(Cre) (/+);Twist1(fl/fl)) by breeding Twist1 floxed mice (Twist1(fl/fl)) with Twist2-Cre recombinase knockin mice (Twist2(Cre) (/+)). The Twist2(Cre) (/+);Twist1(fl/fl) embryos formed smaller tooth germs and abnormal cusps during early tooth morphogenesis. Molecular and histological analyses showed that the developing molars of the Twist2(Cre) (/+);Twist1(fl/fl) embryos had reduced cell proliferation and expression of fibroblast growth factors 3, 4, 9, and 10 and FGF receptors 1 and 2 in the dental epithelium and mesenchyme. In addition, 3-week-old renal capsular transplants of embryonic day 18.5 Twist2(Cre) (/+);Twist1(fl/fl) molars showed malformed crowns and cusps with defective crown dentin and enamel. Immunohistochemical analyses revealed that the implanted mutant molars had defects in odontoblast differentiation and delayed ameloblast differentiation. Furthermore, in vitro ChIP assays demonstrated that Twist1 was able to bind to a specific region of the Fgf10 promoter. In conclusion, our findings suggest that Twist1 plays crucial roles in regulating tooth development and that it may exert its functions through the FGF signaling pathway.
Collapse
Affiliation(s)
- Tian Meng
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246, the State Key Laboratory of Oral Diseases and Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanyu Huang
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246, the Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China, and
| | - Suzhen Wang
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246
| | - Hua Zhang
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246
| | - Paul C Dechow
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246
| | - Xiaofang Wang
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246
| | - Chunlin Qin
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246
| | - Bing Shi
- the State Key Laboratory of Oral Diseases and Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rena N D'Souza
- the University of Utah Health Sciences, Salt Lake City, Utah 84112
| | - Yongbo Lu
- From the Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246,
| |
Collapse
|
25
|
Finlay J, Roberts CM, Dong J, Zink JI, Tamanoi F, Glackin CA. Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1657-66. [PMID: 26115637 DOI: 10.1016/j.nano.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. FROM THE CLINICAL EDITOR Tumor progression and metastasis eventually lead to patient mortality in the clinical setting. In other studies, it has been found that TWIST1, a transcription factor, if reactivated in tumors, would lead to downstream events including angiogenesis and result in poor prognosis in cancer patients. In this article, the authors were able to show that when siRNA against TWIST1 was delivered via mesoporous silica nanoparticle, there was tumor reduction in an in-vivo model. The results have opened up a new avenue for further research in this field.
Collapse
Affiliation(s)
- James Finlay
- Division of Comparative Medicine and, Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Cai M Roberts
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Juyao Dong
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Fuyuhiko Tamanoi
- Department of Microbiology Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Carlotta A Glackin
- Department of Neurosciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
26
|
Zou H, Feng X, Cao JG. Twist in hepatocellular carcinoma: pathophysiology and therapeutics. Hepatol Int 2015; 9:399-405. [DOI: 10.1007/s12072-015-9634-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
|
27
|
Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ, Yang J. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 2015; 17:678-88. [PMID: 25893917 PMCID: PMC4452027 DOI: 10.1038/ncb3157] [Citation(s) in RCA: 692] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Matrix stiffness potently regulates cellular behaviour in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression. Here we report that TWIST1 is an essential mechanomediator that promotes epithelial-mesenchymal transition (EMT) in response to increasing matrix stiffness. High matrix stiffness promotes nuclear translocation of TWIST1 by releasing TWIST1 from its cytoplasmic binding partner G3BP2. Loss of G3BP2 leads to constitutive TWIST1 nuclear localization and synergizes with increasing matrix stiffness to induce EMT and promote tumour invasion and metastasis. In human breast tumours, collagen fibre alignment, a marker of increasing matrix stiffness, and reduced expression of G3BP2 together predict poor survival. Our findings reveal a TWIST1-G3BP2 mechanotransduction pathway that responds to biomechanical signals from the tumour microenvironment to drive EMT, invasion and metastasis.
Collapse
Affiliation(s)
- Spencer C Wei
- 1] Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [2] The Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Jeff H Tsai
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Yurong Guo
- Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Vincent H Pai
- 1] Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [2] The Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Hannah E Majeski
- 1] Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [2] The Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Albert C Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Susan S Taylor
- 1] Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [2] Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [3] Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| | - Jing Yang
- 1] Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA [2] Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive La Jolla, California 92093-0819, USA
| |
Collapse
|
28
|
Ma G, He J, Yu Y, Xu Y, Yu X, Martinez J, Lonard DM, Xu J. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation. Int J Biol Sci 2015; 11:618-28. [PMID: 25892968 PMCID: PMC4400392 DOI: 10.7150/ijbs.11380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.
Collapse
Affiliation(s)
- Gang Ma
- 1. Department of Breast and Thyroid Cancer Surgery, The First Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, China; ; 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun He
- 1. Department of Breast and Thyroid Cancer Surgery, The First Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, China
| | - Yang Yu
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yixiang Xu
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; ; 3. Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiaobin Yu
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jarrod Martinez
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianming Xu
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; ; 4. Institute for Cancer Medicine and School of Basic Medical Sciences, Luzhou Medical College, Sichuan, China
| |
Collapse
|
29
|
Xu Y, Hu B, Qin L, Zhao L, Wang Q, Wang Q, Xu Y, Jiang J. SRC-1 and Twist1 expression positively correlates with a poor prognosis in human breast cancer. Int J Biol Sci 2014; 10:396-403. [PMID: 24719557 PMCID: PMC3979992 DOI: 10.7150/ijbs.8193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/25/2014] [Indexed: 11/16/2022] Open
Abstract
To evaluate the possible prognostic value of Steroid Receptor Coactivator-1 (SRC-1) and Twist1 expression in human breast cancer, we examined SRC-1 and Twist1 expression using immunohistochemistry on tissue microarray sections containing 137 breast cancer specimens. All patients were followed up for a median of 5 years following surgery. Survival curves were generated using the Kaplan-Meier method. Multivariate analysis was performed using the Cox proportional hazard regression model to assess the prognostic values. The results showed a positive correlation between SRC-1 and Twist1 expression at protein levels (P < 0.001). Also, SRC-1 expression positively correlated with HER2 expression (P = 0.024). The protein expression of Twist1 positively associated with lymph node metastasis (P < 0.001), but inversely correlated with PR status (P = 0.041). Patients with SRC-1 or Twist1-positive expression exhibited poorer overall survival (OS) and disease-free survival (DFS) than did those with SRC-1 or Twist1-negative expression (P < 0.05 for all). In addition, SRC-1-negativeive/Twist1-negative patients had the best OS and DFS (P < 0.01 for both). In multivariate survival analysis, SRC-1 expression, tumor stage, and PR were found to be independent prognostic factors related to OS (P = 0.019, < 0.001 and 0.02, respectively) and Twist1 expression, lymph node status and PR were independent predictors of DFS (P = 0.006, 0.001 and 0.029, respectively). These results suggest that a combined SRC-1/Twist1 expression status could improve the prognostic judgment for breast cancer patients.
Collapse
Affiliation(s)
- Yan Xu
- 1. Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Baoquan Hu
- 1. Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Qin
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lianhua Zhao
- 3. Department of Pathology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Wang
- 4. Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingliang Wang
- 4. Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yixiang Xu
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jun Jiang
- 1. Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|