1
|
Ning Y, Fang S, Fang J, Lin K, Nie H, Xiong P, Qiu P, Zhao Q, Wang H, Wang F. Guanylate-binding proteins signature predicts favorable prognosis, immune-hot microenvironment, and immunotherapy response in hepatocellular carcinoma. Cancer Med 2023; 12:17504-17521. [PMID: 37551111 PMCID: PMC10501289 DOI: 10.1002/cam4.6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The role of guanylate-binding proteins (GBPs) in various cancers has been elucidated recently. However, our knowledge of the clinical relevance and biological characteristics of GBPs in hepatocellular carcinoma (HCC) remains limited. METHODS A total of 955 HCC patients were enrolled from five independent public HCC cohorts. The role of GBP molecules in HCC was preliminarily investigated, and a GBP family signature, termed GBPs-score, was constructed by principal component analysis to combine the GBP molecule values. We revealed the effects of GBP genes and GBPs-score in HCC via well-established bioinformatics methods and validated GBP1-5 experimentally in a tissue microarray (TMA) cohort. RESULTS GBPs molecules were closely associated with the prognosis of patients with HCC, and a high GBPs-score highly inferred a favorable survival outcome. We also revealed high GBPs-score was related to anti-tumor immunity, the immune-hot tumor microenvironment (TME), and immunotherapy response. Among the GBPs members, GBP1-5 rather than GBP6/7 may be dominant in these fields. The TMA analysis based on immunohistochemistry showed positive correlations between GBP1-5 and the immune-hot TME with abundant infiltration of CD8+ T cells in HCC. CONCLUSIONS Our integrative study revealed the genetic and immunologic characterizations of GBPs in HCC and highlighted their potential values as promising biomarkers for prognosis and immunotherapy.
Collapse
Affiliation(s)
- Yumei Ning
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Shilin Fang
- Department of Infectious DiseaseZhongnan Hospital of Wuhan University, Hubei AIDS Clinical Training CenterWuhanChina
| | - Jun Fang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Renmin Hospital of Huangmei CountyHuanggangChina
| | - Kun Lin
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haihang Nie
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peiling Xiong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peishan Qiu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Qiu Zhao
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haizhou Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Fan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| |
Collapse
|
2
|
Hunt EN, Kopacz JP, Vestal DJ. Unraveling the Role of Guanylate-Binding Proteins (GBPs) in Breast Cancer: A Comprehensive Literature Review and New Data on Prognosis in Breast Cancer Subtypes. Cancers (Basel) 2022; 14:cancers14112794. [PMID: 35681772 PMCID: PMC9179834 DOI: 10.3390/cancers14112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
At least one member of the Guanylate-Binding Protein (GBP) family of large interferon-induced GTPases has been classified as both a marker of good prognosis and as a potential drug target to treat breast cancers. However, the activity of individual GBPs appears to not just be tumor cell type–specific but dependent on the growth factor and/or cytokine environment in which the tumor cells reside. To clarify what we do and do not know about GBPs in breast cancer, the current literature on GBP-1, GBP-2, and GBP-5 in breast cancer has been assembled. In addition, we have analyzed the role of each of these GBPs in predicting recurrence-free survival (RFS), overall survival (OS), and distance metastasis-free survival (DMFS) as single gene products in different subtypes of breast cancers. When a large cohort of breast cancers of all types and stages were examined, GBP-1 correlated with poor RFS. However, it was the only GBP to do so. When smaller cohorts of breast cancer subtypes grouped into ER+, ER+/Her2-, and HER2+ tumors were analyzed, none of the GBPs influenced RFS, OS, or DMSF as single agents. The exception is GBP-5, which correlated with improved RFS in Her2+ breast cancers. All three GBPs individually predicted improved RFS, OS, and DMSF in ER- breast cancers, regardless of the PR or HER2 status, and TNBCs.
Collapse
|
3
|
Zhao J, Li X, Liu L, Cao J, Goscinski MA, Fan H, Li H, Suo Z. Oncogenic Role of Guanylate Binding Protein 1 in Human Prostate Cancer. Front Oncol 2020; 9:1494. [PMID: 31998647 PMCID: PMC6967410 DOI: 10.3389/fonc.2019.01494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
The Guanylate binding proteins (GBPs) are a family of large GTPases and the most studied GBP family member is the guanylate binding protein 1 (GBP1). Earlier studies revealed that GBP1 expression was inflammatory cytokines-inducible, and most of the studies focused on inflammation diseases. Increasing number of cancer studies began to reveal its biological role in cancers recently, although with contradictory findings in literature. It was discovered from our earlier prostate cancer cell line models studies that when prostate cancer cells treated with either ethidium bromide or a cell cycle inhibitor flavopiridol for a long-term, the treatment-survived tumor cells experienced metabolic reprogramming toward Warburg effect pathways with greater aggressive features, and one common finding from these cells was the upregulation of GBP1. In this study, possible role of GBP1 in two independent prostate cancer lines by application of CRISR/Cas9 gene knockout (KO) technology was investigated. The GBP1 gene KO DU145 and PC3 prostate cancer cells were significantly less aggressive in vitro, with less proliferation, migration, wound healing, and colony formation capabilities, in addition to a significantly lower level of mitochondrial oxidative phosphorylation and glycolysis. At the same time, such GBP1 KO cells were significantly more sensitive to chemotherapeutic reagents. Xenograft experiments verified a significantly slower tumor growth of the GBP1 KO cells in nude mouse model. Furthermore, GBP1 protein expression in clinical prostate cancer sample revealed its aggressive clinical feature correlation and shorter overall survival association. Collectively, our results indicate a pro-survival or oncogenic role of GBP1 in prostate cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, Zhengzhou University, The Academy of Medical Science, Zhengzhou, China
| | - Xiangyu Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Liu
- Department of Oncology, Zhengzhou University, The Academy of Medical Science, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Ji X, Zhu H, Dai X, Xi Y, Sheng Y, Gao C, Liu H, Xue Y, Liu J, Shi J, Zhang Y, Chen Y, Dai X, Li M, Wang A, Dong J. Overexpression of GBP1 predicts poor prognosis and promotes tumor growth in human glioblastoma multiforme. Cancer Biomark 2020; 25:275-290. [PMID: 29991124 DOI: 10.3233/cbm-171177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Guanylate binding protein-1 (GBP1) is highly associated with cell proliferation, and can modulate growth and invasiveness of gliomas. The relationship between GBP1 expression and the prognosis of glioma patients is further evaluated for the purpose of investigating whether GBP1 can serve as an predictor for evaluating prognosis of glioma patients. METHODS GBP1 expression in 528 glioblastoma multiforme (GBM) patients of The Cancer Genome Atlas (TCGA) database were investigated, then 103 surgical specimens from glioma patients in our center were further evaluated. The effect of GBP1 on proliferation, invasion and migration of glioma cells in vitro was analyzed, and the effects of GBP1 on sensitivity of radiotherapy and chemotherapy on glioma cells in vitro were also analyzed. GBP1 associated signaling pathways were identified with Gene Set Enrichment Analysis (GSEA). Besides, the effect of GBP1 expression on proliferation of glioma cells in vivo was analyzed. RESULTS In both TCGA database and our clinical data, GBM tissues exhibited increased mRNA expression of GBP1 gene, its expression level was co-related to PETN deletion and EGFR amplification, and was associated with prognosis of GBM patients. GBP1 overexpression can enhance migration and invasion ability of tumor cells in vitro, and in vivo studies showed that GBP1 can promote tumor proliferation, decrease survival in tumor-bearing mice. GSEA analysis predicted that GBP1 may play its biological roles via toll-like receptor pathway. CONCLUSION This study provides new insights and evidences that high level expression of GBP1 is significantly correlated with progression and prognosis in GBMs. Furthermore, transfection of GBP1 revealed its regulation on migration and invasiveness of glioma cells, decreasing sensitivity of chemotherapeutic agent, shortening survival of tumor-bearing animals. These data demonstrate that GBP1 may serve as a novel prognostic biomarker and a potential therapeutic target for gliomas.
Collapse
|
5
|
Strasser K, Birnleitner H, Beer A, Pils D, Gerner MC, Schmetterer KG, Bachleitner-Hofmann T, Stift A, Bergmann M, Oehler R. Immunological differences between colorectal cancer and normal mucosa uncover a prognostically relevant immune cell profile. Oncoimmunology 2018; 8:e1537693. [PMID: 30713795 PMCID: PMC6343804 DOI: 10.1080/2162402x.2018.1537693] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
T cells in colorectal cancer (CRC) are associated with improved survival. However, checkpoint immunotherapies antagonizing the suppression of these cells are ineffective in the great majority of patients. To better understand the immune cell regulation in CRC, we compared tumor-associated T lymphocytes and macrophages to the immune cell infiltrate of normal mucosa. Human colorectal tumor specimen and tumor-distant normal mucosa tissues of the same patients were collected. Phenotypes and functionality of tissue-derived T cells and macrophages were characterized using immunohistochemistry, RNA in situ hybridization, and multiparameter flow cytometry. CRC contained significantly higher numbers of potentially immunosuppressive CD39 and Helios-expressing regulatory T cells in comparison to normal mucosa. Surprisingly, we found a concomitant increase of pro-inflammatory IFNγ -producing T cells. PD-L1+ stromal cells were decreased in the tumor tissue. Macrophages in the tumor compared to tumor-distant normal tissue appear to have an altered phenotype, identified by HLA-DR, CD14, CX3CR1, and CD64, and tolerogenic CD206+ macrophages are quantitatively reduced. The prognostic effect of these observed differences between distant mucosa and tumor tissue on the overall survival was examined using gene expression data of 298 CRC patients. The combined gene expression of increased FOXP3, IFNγ, CD14, and decreased CD206 correlated with a poor prognosis in CRC patients. These data reveal that the CRC microenvironment promotes the coexistence of seemingly antagonistic suppressive and pro-inflammatory immune responses and might provide an explanation why a blockade of the PD1/PD-L1 axis is ineffective in CRC. This should be taken into account when designing novel treatment strategies.
Collapse
Affiliation(s)
- Katharina Strasser
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Hanna Birnleitner
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrea Beer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Marlene C Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Anton Stift
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Laengle J, Stift J, Bilecz A, Wolf B, Beer A, Hegedus B, Stremitzer S, Starlinger P, Tamandl D, Pils D, Bergmann M. DNA damage predicts prognosis and treatment response in colorectal liver metastases superior to immunogenic cell death and T cells. Am J Cancer Res 2018; 8:3198-3213. [PMID: 29930723 PMCID: PMC6010984 DOI: 10.7150/thno.24699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Preclinical models indicate that DNA damage induces type I interferon (IFN), which is crucial for the induction of an anti-tumor immune response. In human cancers, however, the association between DNA damage and an immunogenic cell death (ICD), including the release and sensing of danger signals, the subsequent ER stress response and a functional IFN system, is less clear. Methods: Neoadjuvant-treated colorectal liver metastases (CLM) patients, undergoing liver resection in with a curative intent, were retrospectively enrolled in this study (n=33). DNA damage (γH2AX), RNA and DNA sensors (RIG-I, DDX41, cGAS, STING), ER stress response (p-PKR, p-eIF2α, CALR), type I and type II IFN- induced proteins (MxA, GBP1), mature dendritic cells (CD208), and cytotoxic and memory T cells (CD3, CD8, CD45RO) were investigated by an immunohistochemistry whole-slide tissue scanning approach and further correlated with recurrence-free survival (RFS), overall survival (OS), radiographic and pathologic therapy response. Results: γH2AX is a negative prognostic marker for RFS (HR 1.32, 95% CI 1.04-1.69, p=0.023) and OS (HR 1.61, 95% CI 1.23-2.11, p<0.001). A model comprising of DDX41, STING and p-PKR predicts radiographic therapy response (AUC=0.785, p=0.002). γH2AX predicts prognosis superior to the prognostic value of CD8. CALR positively correlates with GBP1, CD8 and cGAS. A model consisting of γH2AX, p-eIF2α, DDX41, cGAS, CD208 and CD45RO predicts pathological therapy response (AUC=0.944, p<0.001). Conclusion: In contrast to preclinical models, DNA damage inversely correlated with ICD and its associated T cell infiltrate and potentially serves as a therapeutic target in CLM.
Collapse
|
7
|
Wu T, Dai Y, Wang W, Teng G, Jiao H, Shuai X, Zhang R, Zhao P, Qiao L. Macrophage targeting contributes to the inhibitory effects of embelin on colitis-associated cancer. Oncotarget 2017; 7:19548-58. [PMID: 26799669 PMCID: PMC4991400 DOI: 10.18632/oncotarget.6969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023] Open
Abstract
Macrophages are a major component of inflammatory and tumor microenvironment. We previously reported that embelin suppresses colitis-associated tumorigenesis. Here, the role of macrophage targeting in the anti-inflammatory and anti-tumor properties of embelin was investigated. By using colitis-associated cancer (CAC) model, we demonstrated that embelin significantly depleted colon macrophages by blocking their recruitment. Moreover, embelin attenuated M2-like polarization of macrophages within the tumor microenvironment and eliminated their tumor-promoting functions during the development of CAC. Embelin potently inhibited NF-κB signaling in macrophages and decreased the production of key pro-inflammatory cytokines and tumorigenic factors involved in CAC, such as TNFα, IL-6 and COX-2. In addition, embelin directly reduced the polarization of M2 macrophages in vitro even in the presence of Th2 cytokines. These results suggested that targeting macrophages is, at least in part, responsible for the anti-tumor activity of embelin in CAC. Our observations strengthen the rationale for future validation of embelin in the prevention and treatment of CAC
Collapse
Affiliation(s)
- Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Hongmei Jiao
- Department of Gerontology, Peking University First Hospital, Beijing 100034, China
| | - Xiaowei Shuai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Rongxin Zhang
- Research Center of Basic Medical Sciences and Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Peng Zhao
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
8
|
Naschberger E, Liebl A, Schellerer VS, Schütz M, Britzen-Laurent N, Kölbel P, Schaal U, Haep L, Regensburger D, Wittmann T, Klein-Hitpass L, Rau TT, Dietel B, Méniel VS, Clarke AR, Merkel S, Croner RS, Hohenberger W, Stürzl M. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest 2016; 126:4187-4204. [PMID: 27721236 PMCID: PMC5096916 DOI: 10.1172/jci78260] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Vera S. Schellerer
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manuela Schütz
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Patrick Kölbel
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ute Schaal
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Lisa Haep
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Thomas Wittmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University Medical Center Essen, Essen, Germany
| | - Tilman T. Rau
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Valérie S. Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Susanne Merkel
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland S. Croner
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Hohenberger
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| |
Collapse
|
9
|
Britzen-Laurent N, Herrmann C, Naschberger E, Croner RS, Stürzl M. Pathophysiological role of guanylate-binding proteins in gastrointestinal diseases. World J Gastroenterol 2016; 22:6434-6443. [PMID: 27605879 PMCID: PMC4968125 DOI: 10.3748/wjg.v22.i28.6434] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Guanylate-binding proteins (GBPs) are interferon-stimulated factors involved in the defense against cellular pathogens and inflammation. These proteins, particularly GBP-1, the most prominent member of the family, have been established as reliable markers of interferon-γ-activated cells in various diseases, including colorectal carcinoma (CRC) and inflammatory bowel diseases (IBDs). In CRC, GBP-1 expression is associated with a Th1-dominated angiostatic micromilieu and is correlated with a better outcome. Inhibition of tumor growth by GBP-1 is the result of its strong anti-angiogenic activity as well as its direct anti-tumorigenic effect on tumor cells. In IBD, GBP-1 mediates the anti-proliferative effects of interferon-γ on intestinal epithelial cells. In addition, it plays a protective role on the mucosa by preventing cell apoptosis, by inhibiting angiogenesis and by regulating the T-cell receptor signaling. These functions rely to a large extent on the ability of GBP-1 to interact with and remodel the actin cytoskeleton.
Collapse
|
10
|
Zhan Y, Seregin SS, Chen J, Chen GY. Nod1 Limits Colitis-Associated Tumorigenesis by Regulating IFN-γ Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:5121-9. [PMID: 27183588 DOI: 10.4049/jimmunol.1501822] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
Chronic intestinal inflammation is a major risk factor for the development of colorectal cancer. Nod1, a member of the Nod-like receptor (NLR) family of pattern recognition receptors, is a bacterial sensor that has been previously demonstrated to reduce susceptibility of mice to chemically induced colitis and subsequent tumorigenesis, but the mechanism by which it mediates its protection has not been elucidated. In this study, we show that Nod1 expression in the hematopoietic cell compartment is critical for limiting inflammation-induced intestinal tumorigenesis. Specifically, Nod1-deficient T cells exhibit impaired IFN-γ production during dextran sulfate sodium (DSS)-induced acute inflammation in vivo, and administration of the Nod1 ligand KF1B enhances IFN-γ responses by anti-CD3-activated T cells in vitro. Absence of IFN-γ signaling results in increased inflammation-associated tumors in mice, and adoptive transfer of Nod1(-/-) or IFNγ(-/-) T cells into T cell-deficient mice results in increased tumorigenesis as compared with T cell-deficient mice that were adoptively transferred with wild-type T cells. Collectively, these results suggest a previously unappreciated role for the innate immune receptor Nod1 in suppressing colitis-associated tumorigenesis through a T cell-mediated mechanism.
Collapse
Affiliation(s)
- Yu Zhan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Sergey S Seregin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jiachen Chen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Grace Y Chen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Interferon Gamma Counteracts the Angiogenic Switch and Induces Vascular Permeability in Dextran Sulfate Sodium Colitis in Mice. Inflamm Bowel Dis 2015; 21:2360-71. [PMID: 26164664 DOI: 10.1097/mib.0000000000000490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interferon (IFN)-γ is a central pathogenesis factor in inflammatory bowel disease (IBD) with pleiotropic effects on many different cell types. However, as yet, the immune modulatory functions of IFN-γ in IBD have been predominantly investigated. Based on previous studies showing that IFN-γ acts antiangiogenic in colorectal carcinoma, we investigated the effects of IFN-γ on the vascular system in IBD. METHODS Colon tissues of patients with IBD and dextran sulfate sodium-induced colitis in mice were subjected to immunohistochemistry, quantitative real-time polymerase chain reactions, and in situ hybridization to quantify cell activation, angiogenesis, and immune responses. Vascular structure and permeability in mice were analyzed by ultramicroscopy and in vivo confocal laser endomicroscopy. RESULTS We showed a significantly increased blood vessel density in IBD and dextran sulfate sodium colitis. In mice, this was associated with a disorganized blood vessel structure and profound vascular leakage. As compared with genes associated with angiogenesis, genes associated with inflammatory cell activation including IFN-γ were more strongly upregulated in colitis tissues. IFN-γ exerted direct effects on endothelial cells in IBD tissues in vivo, as indicated by the expression of IFN-γ-induced guanylate binding protein 1 (GBP-1). Neutralization of IFN-γ in the acute dextran sulfate sodium colitis model demonstrated that this cytokine exerts endogenous angiostatic activity in IBD and contributes to increased vascular permeability. CONCLUSIONS The dissection of the pleiotropic activities of IFN-γ in IBD provides new insights to the pathological functions of this cytokine and may be of high relevance for the optimization of combination therapy approaches.
Collapse
|
12
|
Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P, Quatresooz P. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther 2015; 15:943-54. [PMID: 26098949 DOI: 10.1586/14737140.2015.1059279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor prognosis is generally defined by various tumor parameters. However, it is well known that paracrine, endocrine and cell-cell interactions between the tumor and its microenvironment contribute to its growth. The tumor microenvironment (TME) can also influence disease prognosis and is likely to be considered as an important prognostic factor. In addition, conventional therapies can influence the microenvironment and antitumor immunity. Similarly, the TME will influence the effectiveness of therapy. The purpose of this review is to demonstrate how TME is important in therapeutic management. Key interactions between TME and different cancer therapies as well as their current clinical consequences have been described. More research is needed to establish the important network between tumor cells and their environment to highlight their relationships with conventional therapies and develop global therapeutic strategies.
Collapse
Affiliation(s)
- Charles Pottier
- Department of Pathology, University Hospital of Liège, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonavita E, Galdiero MR, Jaillon S, Mantovani A. Phagocytes as Corrupted Policemen in Cancer-Related Inflammation. Adv Cancer Res 2015. [PMID: 26216632 DOI: 10.1016/bs.acr.2015.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inflammation is a key component of the tumor microenvironment. Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) are prototypic inflammatory cells in cancer-related inflammation. Macrophages provide a first line of resistance against infectious agents but in the ecological niche of cancer behave as corrupted policemen. TAMs promote tumor growth and metastasis by direct interactions with cancer cells, including cancer stem cells, as well as by promoting angiogenesis and tissue remodeling and suppressing effective adaptive immunity. In addition, the efficacy of chemotherapy, radiotherapy, and checkpoint blockade inhibitors is profoundly affected by regulation of TAMs. In particular, TAMs can protect and rescue tumor cells from cytotoxic therapy by orchestrating a misguided tissue repair response. Following extensive preclinical studies, there is now proof of concept that targeting tumor-promoting macrophages by diverse strategies (e.g., Trabectedin, anti-colony-stimulating factor-1 receptor antibodies) can result in antitumor activity in human cancer and further studies are ongoing. Neutrophils have long been overlooked as a minor component of the tumor microenvironment, but there is evidence for an important role of TANs in tumor progression. Targeting phagocytes (TAMs and TANs) as corrupted policemen in cancer may pave the way to innovative therapeutic strategies complementing cytoreductive therapies and immunotherapy.
Collapse
Affiliation(s)
| | - Maria Rosaria Galdiero
- IRCCS Istituto Clinico Humanitas, Rozzano, Italy; Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy
| | | | - Alberto Mantovani
- IRCCS Istituto Clinico Humanitas, Rozzano, Italy; Humanits University, Rozzano, Italy.
| |
Collapse
|
14
|
Göktuna SI, Canli O, Bollrath J, Fingerle AA, Horst D, Diamanti MA, Pallangyo C, Bennecke M, Nebelsiek T, Mankan AK, Lang R, Artis D, Hu Y, Patzelt T, Ruland J, Kirchner T, Taketo MM, Chariot A, Arkan MC, Greten FR. IKKα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells. Cell Rep 2014; 7:1914-25. [PMID: 24882009 DOI: 10.1016/j.celrep.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 12/18/2022] Open
Abstract
The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα) as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ)-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC) therapy.
Collapse
Affiliation(s)
- Serkan I Göktuna
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Unit of Signal Transduction (GIGA-ST), GIGA-R, University of Liege and WELBIO, CHU, Sart-Tilman, 4000 Liege, Belgium
| | - Ozge Canli
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Julia Bollrath
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alexander A Fingerle
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany
| | - Michaela A Diamanti
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Charles Pallangyo
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Moritz Bennecke
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Tim Nebelsiek
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Arun K Mankan
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yinling Hu
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21701, USA
| | - Thomas Patzelt
- Department of Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Jürgen Ruland
- Department of Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Alain Chariot
- Unit of Signal Transduction (GIGA-ST), GIGA-R, University of Liege and WELBIO, CHU, Sart-Tilman, 4000 Liege, Belgium
| | - Melek C Arkan
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Florian R Greten
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|