1
|
Arendt W, Kleszczyński K, Gagat M, Izdebska M. Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins. Cells 2025; 14:360. [PMID: 40072086 PMCID: PMC11898689 DOI: 10.3390/cells14050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis. This review aims to summarize current knowledge on the involvement of key ABPs in the development and pathophysiology of endometriosis. We discuss how these proteins influence cytoskeletal remodeling, focal adhesion formation, and interactions with the extracellular matrix, contributing to the unique mechanical properties of endometriotic cells. Furthermore, we explore the putative potential of targeting ABPs as a therapeutic strategy to mitigate the invasive phenotype of endometriotic lesions. By elucidating the role of ABPs in endometriosis, this review provides a foundation for future research and innovative treatment approaches.
Collapse
Affiliation(s)
- Wioletta Arendt
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| |
Collapse
|
2
|
Rosochowicz MA, Kulcenty K, Suchorska WM. Exploring the Role of HtrA Family Genes in Cancer: A Systematic Review. Mol Diagn Ther 2024; 28:347-377. [PMID: 38717523 PMCID: PMC11211202 DOI: 10.1007/s40291-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 06/28/2024]
Abstract
PURPOSE HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer. METHODS The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus). RESULTS A total of 38 articles met the inclusion criteria and involved the expression of HtrA family members and concerned the effect of HtrA expression on cancer and metastasis development or on the factor that influences it. Additionally, 31 reports were retrieved manually. Most articles highlighted that HtrA1 and HtrA3 exhibited tumour suppressor activity, while HtrA2 was associated with tumour growth and metastasis. There were too few studies to clearly define the role of the HtrA4 protease in tumours. CONCLUSION Although the expression of serine proteases of the HtrA family was dependent on tumour type, stage and the presence of metastases, most articles indicated that HtrA1 and HtrA3 expression in tumours was downregulated compared with healthy tissue or cell lines. The expression of HtrA2 was completely study dependent. The limited number of studies on HtrA4 expression made it impossible to draw conclusions about differences in expression between healthy and tumour tissue. The conclusions drawn from the study suggest that HtrA1 and HtrA3 act as tumour suppressors.
Collapse
Affiliation(s)
- Monika Anna Rosochowicz
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland.
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Zhong L, Wang F, Liu D, Kuang W, Ji N, Li J, Zeng X, Li T, Dan H, Chen Q. Single-cell transcriptomics dissects premalignant progression in proliferative verrucous leukoplakia. Oral Dis 2024; 30:172-186. [PMID: 35950708 DOI: 10.1111/odi.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Proliferative verrucous leukoplakia (PVL) is characterized by a spectrum of clinicopathological features and a high risk of malignant transformation. In this study, we aimed to delineate the dynamic changes in molecular signature during PVL progression and identify the potential cell subtypes that play a key role in the premalignant evolution of PVL. METHODS We performed single-cell RNA sequencing on three biopsy samples from a large PVL lesion. These samples exhibited a histopathological continuum of PVL progression. RESULTS By analyzing the transcriptome profiles of 27,611 cells from these samples, we identified ten major cell lineages and revealed that cellular remodeling occurred during the progression of PVL lesions, including epithelial, stromal, and immune cells. Epithelial cells are shifted to tumorigenic states and secretory patterns at the premalignant stage. Immune cells showed growing immunosuppressive phenotypes during PVL progression. Remarkably, two novel cell subtypes INSR+ endothelial cells and ASPN+ fibroblasts, were discovered and may play vital roles in microenvironment remodeling, such as angiogenesis and stromal fibrosis, which are closely involved in malignant transformation. CONCLUSION Our work is the first to depict the cellular landscape of PVL and speculate that disease progression may be driven by functional remodeling of multiple cell subtypes.
Collapse
Affiliation(s)
- Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Simpson KE, Staikos CA, Watson KL, Moorehead RA. Loss of MXRA8 Delays Mammary Tumor Development and Impairs Metastasis. Int J Mol Sci 2023; 24:13730. [PMID: 37762032 PMCID: PMC10530983 DOI: 10.3390/ijms241813730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Matrix-remodeling-associated protein 8 or MXRA8 is a transmembrane protein that can bind arthritogenic alpha viruses like the Chikungunya virus and provide viral entry into cells. MXRA8 can also interact with integrin β3 and thus possibly regulate cell-cell interactions and binding to the extracellular matrix. While MXRA8 has been associated with reduced survival in patients with colorectal and renal clear cell cancers, the role of MXRA8 in breast cancer remains largely unexplored. Therefore, the aim of this research was to determine the role of MXRA8 in breast cancer by knocking out MXRA8 in the human triple-negative breast cancer cell line MDA-MB-231. The loss of MXRA8 reduced cell proliferation in vitro but had no effect on apoptosis or migration in cultured cells. However, the loss of MXRA8 significantly delayed tumor development and reduced metastatic dissemination to the lungs in a xenograft model. RNA sequencing identified three genes, ADMATS1, TIE1, and BMP2, whose expression were significantly reduced in MXRA8-knockout tumors compared to control tumors. MXRA8 staining of a human breast cancer tissue array revealed higher levels of MXRA8 in primary tumors and metastases of aggressive tumor subtypes (TNBC and HER2+) compared to less aggressive, ER+ breast cancers. Our findings demonstrate for the first time that MXRA8 regulates the progression of human TNBC possibly through influencing the interaction of tumor cells with their microenvironment.
Collapse
Affiliation(s)
| | | | | | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.E.S.); (C.A.S.); (K.L.W.)
| |
Collapse
|
5
|
Mainsiouw L, Ryan ME, Hafizi S, Fleming JC. The molecular and clinical role of Tensin 1/2/3 in cancer. J Cell Mol Med 2023. [PMID: 37296531 DOI: 10.1111/jcmm.17714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/12/2023] Open
Abstract
Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1-3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1-3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1-3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.
Collapse
Affiliation(s)
| | - Matthew Edward Ryan
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jason C Fleming
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Le C, Hu X, Tong L, Ye X, Zhang J, Yan J, Sherchan P, Zhang JH, Gao F, Tang J. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2023; 43:869-881. [PMID: 36802818 PMCID: PMC10196755 DOI: 10.1177/0271678x231159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.
Collapse
Affiliation(s)
- Chensheng Le
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurology, Ningbo
Medical Center Lihuili Hospital, Ningbo, China
| | - Xin Hu
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, West
China Hospital, Sichuan University, Chengdu, China
| | - Lusha Tong
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xianghua Ye
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Junyi Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Guangxi
Medical University Cancer Hospital, Nanning, China
| | - Prativa Sherchan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Feng Gao
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Jiping Tang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
7
|
Bischoff P, Trinks A, Wiederspahn J, Obermayer B, Pett JP, Jurmeister P, Elsner A, Dziodzio T, Rückert JC, Neudecker J, Falk C, Beule D, Sers C, Morkel M, Horst D, Klauschen F, Blüthgen N. The single-cell transcriptional landscape of lung carcinoid tumors. Int J Cancer 2022; 150:2058-2071. [PMID: 35262195 DOI: 10.1002/ijc.33995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in non-inflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFβ and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the non-inflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Philip Bischoff
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra Trinks
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Bioportal Single Cells, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Wiederspahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Jan Patrick Pett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Philipp Jurmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Pathology, LMU Munich, München, Germany
| | - Aron Elsner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany
| | - Tomasz Dziodzio
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany
| | - Jens-Carsten Rückert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany
| | - Jens Neudecker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.,DZIF, German Center for Infectious Diseases, TTU-IICH Hannover-Braunschweig site, Braunschweig, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,BIH Bioportal Single Cells, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederick Klauschen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, LMU Munich, München, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
8
|
Li Y, Li X, Chen H, Sun K, Li H, Zhou Y, Wang J, Bai F, Yang F. Single-cell RNA sequencing reveals the multi-cellular ecosystem in different radiological components of pulmonary part-solid nodules. Clin Transl Med 2022; 12:e723. [PMID: 35184398 PMCID: PMC8858630 DOI: 10.1002/ctm2.723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Early-stage lung adenocarcinoma that radiologically manifests as part-solid nodules, consisting of both ground-glass and solid components, has distinctive growth patterns and prognosis. The characteristics of the tumour microenvironment and transcriptional features of the malignant cells of different radiological phenotypes remain poorly understood. METHODS Twelve treatment-naive patients with radiological part-solid nodules were enrolled. After frozen pathology was confirmed as lung adenocarcinoma, two regions (ground-glass and solid) from each of the 12 part-solid nodules and 5 normal lung tissues from 5 of the12 patients were subjected to single-cell sequencing by 10x Genomics. We used Seurat v3.1.5 for data integration and analysis. RESULTS We comprehensively dissected the multicellular ecosystem of the ground-glass and solid components of part-solid nodules at the single-cell resolution. In tumours, these components had comparable proportions of malignant cells. However, the angiogenesis, epithelial-to-mesenchymal transition, KRAS, p53, and cell-cycle signalling pathways were significantly up-regulated in malignant cells within solid components compared to those within ground-glass components. For the tumour microenvironment, the relative abundance of myeloid and NK cells tended to be higher in solid components than in ground-glass components. Slight subtype composition differences existed between the ground-glass and solid components. The T/NK cell subsets' cytotoxic function and the macrophages' pro-inflammation function were suppressed in solid components. Moreover, pericytes in solid components had a stronger communication related to angiogenesis promotion with endothelial cells and tumour cells. CONCLUSION The cellular landscape of ground-glass components is significantly different from that of normal tissue and similar to that of solid components. However, transcriptional differences exist in the vital signalling pathways of malignant and immune cells within these components.
Collapse
Affiliation(s)
- Yanmeng Li
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| | - Xiao Li
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| | - Haiming Chen
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| | - Kunkun Sun
- Department of PathologyPeking University People's HospitalBeijingChina
| | - Hao Li
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| | - Ying Zhou
- Department of PathologyPeking University People's HospitalBeijingChina
| | - Jun Wang
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
- Beijing Advanced Innovation Center for Genomics (ICG)Peking UniversityBeijingChina
| | - Fan Yang
- Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences & Department of Thoracic SurgeryPeople's Hospital, Peking UniversityBeijingChina
| |
Collapse
|
9
|
Matsuki M, Hirohashi Y, Nakatsugawa M, Murai A, Kubo T, Hashimoto S, Tokita S, Murata K, Kanaseki T, Tsukahara T, Nishida S, Tanaka T, Kitamura H, Masumori N, Torigoe T. Tumor-infiltrating CD8 + T cells recognize a heterogeneously expressed functional neoantigen in clear cell renal cell carcinoma. Cancer Immunol Immunother 2021; 71:905-918. [PMID: 34491407 DOI: 10.1007/s00262-021-03048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are used in cancer immunotherapy to block programmed death-1 and cytotoxic T-lymphocyte antigen 4, but the response rate for ICIs is still low and tumor cell heterogeneity is considered to be responsible for resistance to immunotherapy. Tumor-infiltrating lymphocytes (TILs) have an essential role in the anti-tumor effect of cancer immunotherapy; however, the specificity of TILs in renal cell carcinoma (RCC) is elusive. In this study, we analyzed a 58-year-old case with clear cell RCC (ccRCC) with the tumor showing macroscopic and microscopic heterogeneity. The tumor was composed of low-grade and high-grade ccRCC. A tumor cell line (1226 RCC cells) and TILs were isolated from the high-grade ccRCC lesion, and a TIL clone recognized a novel neoantigen peptide (YVVPGSPCL) encoded by a missense mutation of the tensin 1 (TNS1) gene in a human leukocyte antigen-C*03:03-restricted fashion. The TNS1 gene mutation was not detected in the low-grade ccRCC lesion and the TIL clone did not recognized low-grade ccRCC cells. The missense mutation of TNS1 encoding the S1309Y mutation was found to be related to cell migration by gene over-expression. These findings suggest that macroscopically and microscopically heterogenous tumors might show heterogenous gene mutations and reactivity to TILs.
Collapse
Affiliation(s)
- Masahiro Matsuki
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan.,Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan.
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan.,Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, 193-0998, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Sachiyo Nishida
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroshi Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
10
|
Duan J, Wang L, Shang L, Yang S, Wu H, Huang Y, Miao Y. miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci Rep 2021; 41:BSR20201539. [PMID: 33269380 PMCID: PMC7785040 DOI: 10.1042/bsr20201539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
AIM The purpose of the present study was to explore the function and mechanism of tensin 1 (TNS1) in non-small cell lung cancer (NSCLC) progression. METHODS The expression of TNS1 in NSCLC cells and tissues was assessed by RT-PCR and Western blot. Besides, Kaplan-Meier survival analysis was recruited to explore the association between TNS1 and NSCLC. Cell growth was analyzed by MTT and flow cytometry assay, while cell metastasis was determined by wound healing and transwell assays. The targeting relationship between TNS1 and miR-152 was assessed by luciferase activity assays. And Western blot was employed to determine the expression of related proteins of Akt/mTOR/RhoA pathway. RESULTS TNS1 level was boosted in NSCLC cells and tissues, related to the prognosis of NSCLC patients. Furthermore, it was proved that TNS1 promoted the growth and metastasis of NSCLC cells via Akt/mTOR/RhoA pathway. And miR-152 targeted TNS1 to affect the progression of NSCLC. CONCLUSION miR-152/TNS1 axis inhibits the progression of NSCLC by Akt/mTOR/RhoA pathway.
Collapse
Affiliation(s)
- Jinjin Duan
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Yongcheng Huang
- Department of Pathology, Xi’an Central Hospital, Xi’an, Shaanxi 7100033, P.R. China
| | - Yi Miao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| |
Collapse
|
11
|
Zhang D, Qian C, Wei H, Qian X. Identification of the Prognostic Value of Tumor Microenvironment-Related Genes in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2020; 7:599475. [PMID: 33381521 PMCID: PMC7767869 DOI: 10.3389/fmolb.2020.599475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological type of esophageal cancer, but there is a lack of definite prognostic markers for this cancer. Methods: We used the ESTIMATE algorithm to access the tumor microenvironment (TME) of ESCC cases deposited in the TCGA database, and identified TME-related prognostic genes using Cox regression analysis. A least absolute shrinkage and selector operation or LASSO algorithm was used to identify key prognostic genes. Risk scores were calculated, and a clinical predictive model was constructed to evaluate the prognostic value of TME-related genes. Results: We found that high immune and stromal scores were significantly associated with poor overall survival (p < 0.05). We identified a total of 1,151 TME-related differently expression genes, among which 67 were prognosis-related genes. Through the LASSO method, 13 key prognostic genes were selected, namely, ADAMTS16, LOC51089, CH25H, CORO2B, DLGAP1, GYS2, HAL, MXRA8, NPTX1, OTX1, RET, SLC24A2, and SPI1, and a 13-gene risk score was constructed. A higher score was indicative of a poorer prognosis than a lower risk score (hazard ratio = 8.21, 95% confidence interval: 2.56-26.31; P < 0.001). The risk score was significantly correlated with immune/stromal scores and various types of infiltrating immune cells, including CD8 cells, regulatory T cells, and resting macrophages. Conclusion: We characterized the tumor microenvironment in ESCC, and identified the key prognosis genes. The risk score based on the expression profiles of these genes is proposed as an indicator of TME status and is instrumental in predicting patient prognosis.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Changlin Qian
- Department of General Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabing Wei
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaozhe Qian
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Prazosin inhibits the proliferation and survival of acute myeloid leukaemia cells through down-regulating TNS1. Biomed Pharmacother 2020; 124:109731. [DOI: 10.1016/j.biopha.2019.109731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
|
13
|
Li Y, Yuan J, Rothzerg E, Wu X, Xu H, Zhu S, Xu J. Molecular structure and the role of high-temperature requirement protein 1 in skeletal disorders and cancers. Cell Prolif 2019; 53:e12746. [PMID: 31867863 PMCID: PMC7048211 DOI: 10.1111/cpr.12746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023] Open
Abstract
Human high‐temperature requirement protein 1 (HTRA1) is a member of serine proteases and consists of four well‐defined domains—an IGFBP domain, a Kazal domain, a protease domain and a PDZ domain. HTRA1 is a secretory protein and also present intracellularly and associated with microtubules. HTRA1 regulates a broad range of physiological processes via its proteolytic activity. This review examines the role of HTRA1 in bone biology, osteoarthritis, intervertebral disc (IVD) degeneration and tumorigenesis. HTRA1 mediates diverse pathological processes via a variety of signalling pathways, such as TGF‐β and NF‐κB. The expression of HTRA1 is increased in arthritis and IVD degeneration, suggesting that HTRA1 protein is attributed to cartilage degeneration and disease progression. Emerging evidence also suggests that HTRA1 has a role in tumorigenesis. Further understanding the mechanisms by which HTRA1 displays as an extrinsic and intrinsic regulator in a cell type–specific manner will be important for the development of HTRA1 as a therapeutic target.
Collapse
Affiliation(s)
- Yihe Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jinbo Yuan
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinghuo Wu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Rahmawati E, Yang WCV, Lei YP, Maurya PK, Chen HW, Tzeng CR. Gonadotropin-releasing hormone agonist induces downregulation of tensin 1 in women with endometriosis. Acta Obstet Gynecol Scand 2018; 98:222-231. [PMID: 30312486 DOI: 10.1111/aogs.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Many cell migration-related molecules are associated with endometriosis. Tensin 1 (TNS1), which has been implicated in cell migration, may play a role in endometriosis. The study goal was to evaluate the TNS1 expression in endometrial tissue and serum from women with endometriosis treated with gonadotropin-releasing hormone agonist (GnRHa). MATERIAL AND METHODS Tissue and serum samples were collected from women with endometriosis who were treated (n = 29) with GnRHa or untreated (n = 30). TNS1 mRNA was examined using quantitative PCR. TNS1 protein levels in tissue and serum samples were investigated using Western blot, immunohistochemistry and ELISA. Eleven women with endometriosis participated in a follow-up investigation of serum TNS1 before and after GnRHa treatment. RESULTS TNS1 mRNA (P = 0.006) and protein (P = 0.001) were significantly downregulated in endometriotic tissue from women with endometriosis who received GnRHa. Immunolocalization of TNS1 showed strong expression in the epithelial and stromal cells of endometriotic tissue from women untreated with GnRHa, whereas endometriotic tissue from GnRHa-treated women showed low TNS1 expression. Follow-up monitoring of serum TNS1 concentration in 11 women showed an average decrease in concentration of 53%, from 294.9 ± 66.69 to 140.3 ± 55.21 pg/mL, following GnRHa treatment (P = 0.003). CONCLUSIONS GnRHa induces downregulation of TNS1 in tissue and serum in women with endometriosis. These results emphasize the importance TNS1 as a potential therapeutic molecular target for the treatment of endometriosis with GnRHa.
Collapse
Affiliation(s)
- Endah Rahmawati
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wei-Chung V Yang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ping Lei
- Department of Obstetrics and Gynecology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pawan K Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Zhou H, Zhang Y, Wu L, Xie W, Li L, Yuan Y, Chen Y, Lin Y, He X. Elevated transgelin/TNS1 expression is a potential biomarker in human colorectal cancer. Oncotarget 2018; 9:1107-1113. [PMID: 29416680 PMCID: PMC5787423 DOI: 10.18632/oncotarget.23275] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022] Open
Abstract
Transgelin is an actin-binding protein that regulates cell motility and other important cellular functions. Previous studies have suggested that transgelin expression is associated with cancer development and progression, but its specific role in colorectal cancer (CRC) remains controversial. We analyzed expression of transgelin and its candidate downstream target, tensin 1 (TNS1), in CRC patients using the ONCOMINE, Protein Atlas, and OncoLnc databases. Transgelin and TNS1 mRNA and protein levels were higher in CRC patients and CRC cell lines than in normal tissues and cells. Survival analyses using the OncoLnc database revealed that elevated TAGLN/TNS1 levels were associated with a poor overall survival in CRC patients. Transgelin suppression using siRNA decreased TNS1 expression in CRC cells, demonstrating that transgelin induces the TNS1 expression. Importantly, suppression of transgelin or TNS1 using siRNA decreased proliferation and invasiveness of CRC cells. These results suggest that transgelin/TNS1 signaling promotes CRC cell proliferation and invasion, and that transgelin/TNS1 expression levels could potentially serve as a prognostic and therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihao Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Yuan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Lin
- Department of Gastroenterology and Hepatology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxiang He
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Lai X, Umbricht CB, Fisher K, Bishop J, Shi Q, Chen S. Identification of novel biomarker and therapeutic target candidates for diagnosis and treatment of follicular carcinoma. J Proteomics 2017; 166:59-67. [DOI: 10.1016/j.jprot.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
|
17
|
Bhosale PG, Cristea S, Ambatipudi S, Desai RS, Kumar R, Patil A, Kane S, Borges AM, Schäffer AA, Beerenwinkel N, Mahimkar MB. Chromosomal Alterations and Gene Expression Changes Associated with the Progression of Leukoplakia to Advanced Gingivobuccal Cancer. Transl Oncol 2017; 10:396-409. [PMID: 28433800 PMCID: PMC5403767 DOI: 10.1016/j.tranon.2017.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022] Open
Abstract
We present an integrative genome-wide analysis that can be used to predict the risk of progression from leukoplakia to oral squamous cell carcinoma (OSCC) arising in the gingivobuccal complex (GBC). We find that the genomic and transcriptomic profiles of leukoplakia resemble those observed in later stages of OSCC and that several changes are associated with this progression, including amplification of 8q24.3, deletion of 8p23.2, and dysregulation of DERL3, EIF5A2, ECT2, HOXC9, HOXC13, MAL, MFAP5 and NELL2. Comparing copy number profiles of primary tumors with and without lymph-node metastasis, we identify alterations associated with metastasis, including amplifications of 3p26.3, 8q24.21, 11q22.1, 11q22.3 and deletion of 8p23.2. Integrative analysis reveals several biomarkers that have never or rarely been reported in previous OSCC studies, including amplifications of 1p36.33 (attributable to MXRA8), 3q26.31 (EIF5A2), 9p24.1 (CD274), and 12q13.2 (HOXC9 and HOXC13). Additionally, we find that amplifications of 1p36.33 and 11q22.1 are strongly correlated with poor clinical outcome. Overall, our findings delineate genomic changes that can be used in treatment management for patients with potentially malignant leukoplakia and OSCC patients with higher risk of lymph-node metastasis.
Collapse
Affiliation(s)
- Priyanka G Bhosale
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Simona Cristea
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Srikant Ambatipudi
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Navi Mumbai, 410210, India; MRC Integrative Epidemiology Unit, University of Bristol, BS8 1TH, UK
| | - Rajiv S Desai
- Department of Oral Pathology & Microbiology, Nair Hospital Dental College, Mumbai, 400 008, India
| | - Rajiv Kumar
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre (TMC), Parel, Mumbai, 400012, India
| | - Asawari Patil
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre (TMC), Parel, Mumbai, 400012, India
| | - Shubhada Kane
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre (TMC), Parel, Mumbai, 400012, India
| | - Anita M Borges
- Department of Pathology & Laboratory Medicine, S. L. Raheja Hospital, Mumbai, 400016, India
| | - Alejandro A Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, National Institute of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, 20894, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Manoj B Mahimkar
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
18
|
Mathur PS, Gierut JJ, Guzman G, Xie H, Xicola RM, Llor X, Chastkofsky MI, Perekatt AO, Tyner AL. Kinase-Dependent and -Independent Roles for PTK6 in Colon Cancer. Mol Cancer Res 2016; 14:563-73. [PMID: 26983689 DOI: 10.1158/1541-7786.mcr-15-0450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Disruption of the gene encoding Protein Tyrosine Kinase 6 (Ptk6) delayed differentiation and increased growth in the mouse intestine. However, Ptk6-null mice were also resistant to azoxymethane-induced colon tumorigenesis. To further explore functions of PTK6 in colon cancer, expression of epithelial and mesenchymal markers, as well as proliferation, migration, and xenograft tumor growth, was examined in human colon tumor cell lines with knockdown or overexpression of PTK6. PTK6 protein, transcript, and activation were also examined in a human colon tumor tissue array, using immunohistochemistry and qRT-PCR. Knockdown of PTK6 led to the epithelial-mesenchymal transition (EMT) in SW480 and HCT116 cells, whereas overexpression of PTK6 in SW620 cells restored an epithelial phenotype in a kinase-independent manner. PTK6 knockdown also increased xenograft tumor growth of SW480 cells, suggesting tumor suppressor functions. In clinical specimens, PTK6 expression was highest in normal differentiated epithelial cells and reduced in tumors. In contrast, overexpression of constitutively active PTK6 promoted STAT3 and ERK5 activation in colon cancer cells, and endogenous PTK6 promoted cell survival and oncogenic signaling in response to DNA-damaging treatments. These data indicate that PTK6 has complex, context-specific functions in colon cancer; PTK6 promotes the epithelial phenotype to antagonize the EMT in a kinase-independent manner, whereas activation of PTK6 promotes oncogenic signaling. IMPLICATIONS Understanding context-specific functions of PTK6 is important, because although it promotes cell survival and oncogenic signaling after DNA damage, expression of PTK6 in established tumors may maintain the epithelial phenotype, preventing tumor progression. Mol Cancer Res; 14(6); 563-73. ©2016 AACR.
Collapse
Affiliation(s)
- Priya S Mathur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Xie
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Rosa M Xicola
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Xavier Llor
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Michael I Chastkofsky
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Ansu O Perekatt
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|