1
|
Zhou Y, Chen X, Zu X. ZBTB7A as a therapeutic target for cancer. Biochem Biophys Res Commun 2024; 736:150888. [PMID: 39490153 DOI: 10.1016/j.bbrc.2024.150888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ZBTB7A, alternatively referred to Pokemon, FBI-1, LRF, and OCZF, is classified as a member of POK/ZBTB protein family of transcriptional repressors. ZBTB7A binds to targeted DNA via C-terminal zinc fingers and recruits co-compression complexes through N-terminal BTB ⁄ POZ domain to impede transcription. ZBTB7A regulates a range of fundamental biological processes such as cell proliferation, differentiation and apoptosis, B- and T-lymphocyte fate determination and thymic insulin expression and self-tolerance. Accumulating evidence has demonstrated an important role of ZBTB7A in the initiation and advancement of tumors, thus making ZBTB7A emerge as an appealing target. This review examines the functions and regulatory mechanisms of ZBTB7A in a range of common solid tumors, including hepatocellular carcinoma, breast cancer, prostate cancer and lung cancer, as well as hematological malignancies. Notably, the review concludes with a summary of the recent applications of targeting ZBTB7A in clinical treatments through gene silencing, immunotherapy and chemotherapeutic approaches to halt or slow tumor progression. We focus on the functional role and regulatory mechanisms of ZBTB7A in cancer with the goal of providing new insights for the development of more effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xisha Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, China.
| |
Collapse
|
2
|
Singh AK, Verma S, Kushwaha PP, Prajapati KS, Shuaib M, Kumar S, Gupta S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 2021; 48:4703-4719. [PMID: 34014468 DOI: 10.1007/s11033-021-06405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Chen M, Xiao C, Jiang W, Yang W, Qin Q, Tan Q, Lian B, Liang Z, Wei C. Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:125-140. [PMID: 33469265 PMCID: PMC7811378 DOI: 10.2147/dddt.s269901] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/09/2020] [Indexed: 01/15/2023]
Abstract
Background As a natural compound extracted from a variety of hot peppers, capsaicin has drawn increasing attention to its anti-cancer effects against multiple human cancers including breast cancer. FBI-1 is a major proto-oncogene negatively regulating the transcription of many tumor suppressor genes, and plays a vital role in tumorigenesis and progression. However, whether FBI-1 is involved in capsaicin-induced breast cancer suppression has yet to be ascertained. This study aimed to investigate the effects of capsaicin on proliferation and apoptosis and its association with FBI-1 expression in breast cancer. Methods CCK-8 and morphological observation assay were employed to detect cell proliferation. Flow cytometry and TUNEL assay were conducted to detect cell apoptosis. RNA interference technique was used to overexpress or silence FBI-1 expression. qRT-PCR and/or Western blot analysis were applied to detect the protein expression of FBI-1, Ki-67, Bcl-2, Bax, cleaved-Caspase 3, Survivin and NF-κB p65. Xenograft model in nude mice was established to assess the in vivo effects. Results Capsaicin significantly inhibited proliferation and induced apoptosis in breast cancer in vitro and in vivo, along with decreased FBI-1, Ki-67, Bcl-2 and Survivin protein expression, increased Bax protein expression and activated Caspase 3. Furthermore, FBI-1 overexpression obviously attenuated the capsaicin-induced anti-proliferation and pro-apoptosis effect, accompanied with the above-mentioned proteins reversed, whereas FBI-1 silencing generated exactly the opposite response. In addition, as a target gene of FBI-1, NF-κB was inactivated by p65 nuclear translocation suppressed with capsaicin treatment, which was perceptibly weakened with FBI-1 overexpression or enhanced with FBI-1 silencing. Conclusion This study reveals that FBI-1 is closely involved in capsaicin-induced anti-proliferation and pro-apoptosis of breast cancer. The underlying mechanism may be related to down-regulation of FBI-1-mediated NF-κB pathway. Targeting FBI-1 with capsaicin may be a promising therapeutic strategy in patients with breast cancer.
Collapse
Affiliation(s)
- Maojian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine and Public Health, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Wei Jiang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Weiping Yang
- Department of Ultrasound Diagnosis, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Qinghong Qin
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Qixing Tan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Bin Lian
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Zhijie Liang
- Department of Gland Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, Guangxi 530022, People's Republic of China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
4
|
Gupta S, Singh AK, Prajapati KS, Kushwaha PP, Shuaib M, Kumar S. Emerging role of ZBTB7A as an oncogenic driver and transcriptional repressor. Cancer Lett 2020; 483:22-34. [PMID: 32348807 DOI: 10.1016/j.canlet.2020.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
ZBTB7A is a member of the POK family of transcription factors that possesses a POZ-domain at the N-terminus and Krüppel-like zinc-finger at the c-terminus. ZBTB7A was initially isolated as a protein that binds to the inducer of the short transcript of HIV-1 virus TAT gene promoter. The protein forms a homodimer through protein-protein interaction via the N-terminus POZ-domains. ZBTB7A typically binds to the DNA elements through its zinc-finger domains and represses transcription both by modification of the chromatin organization and through the direct recruitment of transcription factors to gene regulatory regions. ZBTB7A is involved in several fundamental biological processes including cell proliferation, differentiation, and development. It also participates in hematopoiesis, adipogenesis, chondrogenesis, cellular metabolism and alternative splicing of BCLXL, DNA repair, development of oligodendrocytes, osteoclast and unfolded protein response. Aberrant ZBTB7A expression promotes oncogenic transformation and tumor progression, but also maintains a tumor suppressive role depending on the type and genetic context of cancer. In this comprehensive review we provide information about the structure, function, targets, and regulators of ZBTB7A and its role as an oncogenic driver and transcriptional repressor in various human diseases.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Atul Kumar Singh
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Kumari Sunita Prajapati
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Mohd Shuaib
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
5
|
Feng X, Wei Z, Zhang S, Du Y, Zhao H. A Review on the Pathogenesis and Clinical Management of Placental Site Trophoblastic Tumors. Front Oncol 2019; 9:937. [PMID: 31850188 PMCID: PMC6893905 DOI: 10.3389/fonc.2019.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
Placental site trophoblastic tumor (PSTT) is a rare type of gestational trophoblastic disease originating from the intermediate trophoblast. Compared with hydatidiform mole, invasive hydatidiform mole and choriocarcinoma, the diagnosis of PSTT is more complicated and lacks specific and sensitive tumor markers. Most PSTT patients demonstrate malignant potential, and the primary treatment of PSTT is hysterectomy. However, metastasis occasionally occurs and even causes death in a small number of PSTT patients. Most PSTT patients are young women hence fertility preservation is an important consideration. The major obstacle for PSTT patient prognosis is chemotherapy resistance. However, the current understanding of the pathogenesis of PSTT and clinical treatment remains elusive. In this review, we summarized the research progress of PSTT in recent years from three aspects: mechanism, clinical presentation, and treatment and prognosis. Well-conducted multi-center studies with sufficient sample sizes are of great importance to better examine the pathological progress and evaluate the prognosis of PSTT patients, so as to develop prevention and early detection programs, as well as novel treatment strategies, and finally improve prognosis for PSTT patients.
Collapse
Affiliation(s)
- Xuan Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhi Wei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Sai Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
6
|
Wang CJ, Chao CR, Liu HM, Zhu YY, Adell G, Jarlsfelt I, Zhang H, Sun XF. Prognostic value of nuclear FBI-1 in patients with rectal cancer with or without preoperative radiotherapy. Oncol Lett 2019; 18:5301-5309. [PMID: 31612040 PMCID: PMC6781643 DOI: 10.3892/ol.2019.10890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 11/06/2022] Open
Abstract
Factor that binds to the inducer of short transcripts of the human immunodeficiency virus-1 (FBI-1) represents as a crucial gene regulator in colorectal cancer; however, the correlation between FBI-1 and preoperative radiotherapy (RT) in rectal cancer (RC) has not yet been reported. The aim was to detect FBI-1 expression in patients with RC with or without RT, by immunohistochemistry and quantitative polymerase chain reaction, and to analyze its association with clinicopathological features and response to RT. The results from immunohistochemistry analysis (n=139) and reverse transcription-quantitative polymerase chain reaction (n=55) demonstrated that FBI-1 was overexpressed in patients with RC, whether they had received preoperative RT or not. Subsequently, the association between FBI-1 expression, and the clinicopathological features and response to RT in patients with RC was analyzed. Cytoplasmic FBI-1 was upregulated in non-RT (n=77) and RT (n=62) groups (17.7 vs. 74.0%, P<0.001; 41.1 vs. 69.4%, P=0.002, respectively) of patients with RC compared with normal mucosa. However, nuclear FBI-1 was downregulated (75.8 vs. 22.1%, P<0.001; 83.9 vs. 35.5%, P<0.001, respectively) in both groups. RT had no significant effect on FBI-1 expression in RC tissues. Furthermore, nuclear FBI-1 was positively associated with tumor-node-metastasis stage and distant recurrence (P=0.003 and P=0.010, respectively). In patients with stage I, II or III RC, higher nuclear FBI-1 expression was associated with poorer disease-free survival [hazard ratio (HR)=1.934, 95% confidence interval (CI): 1.055-3.579, P=0.033] and overall survival (HR=2.174, 95% CI: 1.102-4.290, P=0.025), independently of sex, age, growth pattern, differentiation and RT. In addition, FBI-1 was positively correlated with numerous biological factors, including p73 [Spearman's correlation coefficient (rs)=0.332, P=0.007], lysyl oxidase (rs=0.234, P=0.043), Wrap53 (rs=-0.425, P=0.0002) and peroxisome proliferator-activated receptor δ (rs=-0.294, P=0.026). In conclusion, the present study demonstrated that nuclear FBI-1 was an independent prognostic factor in patients with RC and correlated with numerous biological factors, which indicated that it may have multiple roles in RC.
Collapse
Affiliation(s)
- Chao-Jie Wang
- Department of Oncology, Henan Provincial People's Hospital & People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
- Department of Oncology, Linköping University, Linköping SE-58183, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-58183, Sweden
| | - Chu-Rui Chao
- Department of Oncology, Henan Provincial People's Hospital & People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Hui-Min Liu
- Department of Oncology, Henan Provincial People's Hospital & People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Yan-Yan Zhu
- Department of Oncology, Henan Provincial People's Hospital & People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Gunnar Adell
- Department of Oncology, Linköping University, Linköping SE-58183, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-58183, Sweden
| | - Ingvar Jarlsfelt
- Department of Pathology, Ryhov Hospital, Jönköping SE-55111, Sweden
| | - Hong Zhang
- Department of Medical Sciences, Örebro University, Örebro SE-70182, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, Linköping SE-58183, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-58183, Sweden
| |
Collapse
|
7
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
8
|
Wang Z, Zhao X, Wang W, Liu Y, Li Y, Gao J, Wang C, Zhou M, Liu R, Xu G, Zhou Q. ZBTB7 evokes 5-fluorouracil resistance in colorectal cancer through the NF‑κB signaling pathway. Int J Oncol 2018; 53:2102-2110. [PMID: 30106136 DOI: 10.3892/ijo.2018.4521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/20/2018] [Indexed: 11/05/2022] Open
Abstract
Zinc finger and BTB domain containing 7A (ZBTB7), a POZ/BTB and Krüppel erythroid myeloid oncogenic factor, is critical for the tumorigenicity and progression of various cancer types. ZBTB7 has been reported to promote the cell proliferation of colorectal cancers (CRC). However, the function of ZBTB7 to 5-fluorouracil (5‑FU) resistance has not yet been studied. In the current study, ZBTB7 expression and function in 5‑FU resistance in CRC were investigated using with multidisciplinary approaches, including western blot analysis, Transwell assay, CCK8 and a tumor xenograft model. Overexpression of ZBTB7 was increased the level of proteins associated with cell invasion and epithelial-mesenchymal transition. ZBTB7 inhibition attenuated the invasion and enhanced the apoptosis of CRC cells. IC50 values and cell viability were significantly reduced in cells with short hairpin RNA (shRNA)-mediated ZBTB7 depletion compared with the control group. 5‑FU administration decreased viability to a greater extent in the ZBTB7-shRNA group compared with the control, which was dose- and time-dependent. Analysis of gene expression omnibus data demonstrated that ZBTB7 mediated 5‑FU resistance, potentially through nuclear factor (NF)-κB signaling. NF‑κB inhibitor SN50 reversed ZBTB7-induced resistance in CRC. Collectively, the findings demonstrated that ZBTB7 mediated 5‑FU resistance in CRC cells through NF‑κB signaling. Thus, targeting ZBTB7 and NF‑κB signaling may be an effective strategy to reverse 5‑FU resistance in CRC.
Collapse
Affiliation(s)
- Zexin Wang
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Xilan Zhao
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Wei Wang
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Yishu Liu
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Yanyan Li
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Junyong Gao
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Cancan Wang
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Meiyu Zhou
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Ruyan Liu
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Guofa Xu
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| | - Qi Zhou
- Department of Oncology, Chongqing Fuling Central Hospital, Chongqing 408099, P.R. China
| |
Collapse
|
9
|
Wong OGW, Cheung CLY, Ip PPC, Ngan HYS, Cheung ANY. Amyloid Precursor Protein Overexpression in Down Syndrome Trophoblast Reduces Cell Invasiveness and Interferes with Syncytialization. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2307-2317. [PMID: 30031727 DOI: 10.1016/j.ajpath.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
Abstract
The placentas of Down syndrome (DS) pregnancies exhibit morphologic and functional abnormalities. Although the increase in dosage of certain genes on chromosome 21 has been associated with the DS phenotype, the effects on placenta have seldom been studied. Herein, we examine the expression of four dosage-sensitive genes (APP, ETS2, SOD1, and HMGN1) in normal and DS placentas. We demonstrated significant overexpression of amyloid precursor protein (APP) in DS placentas at RNA and protein levels by real-time quantitative PCR, Western blot analysis, and immunohistochemistry. Inducible APP overexpression trophoblast cell line models were established using a Tet-On system. APP induction in HTR-8/SVneo dose-dependently decelerated cell growth, enhanced apoptosis, and reduced cell migration and invasion when compared with the uninduced controls. Concomitantly, decreased β-human chorionic gonadotropin in the culture medium was also detected on induction. Moreover, although forskolin treatment induced α/β-human chorionic gonadotropin and syncytin expression in BeWo cells, such induction of syncytialization was inhibited by APP overexpression. E-cadherin immunofluorescence also demonstrated a decrease in syncytia formation in forskolin-treated BeWo-overexpressing APP. By liquid chromatography-tandem mass spectrometry, proteins related to cell-cell adhesion, protein translation, processing, and folding were found to be up-regulated in APP-induced HTR-8/SVneo clones. Our data demonstrated, for the first time, the effects of increased APP expression in DS placenta.
Collapse
Affiliation(s)
- Oscar G W Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China.
| | - Claire L Y Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Philip P C Ip
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
10
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Ham J, Lim W, Bazer FW, Song G. Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J Cell Physiol 2017; 233:1638-1649. [PMID: 28657208 DOI: 10.1002/jcp.26069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Silibinin is a flavonolignan extracted from seeds of milk thistles. Traditionally, it has been used as a therapeutic agent for liver disorders, and now it is well-known for its anti-cancer effects. However, studies on anti-cancer effects of silibinin on choriocarcinoma are very limited. Therefore, we performed proliferation and apoptosis assays to determine effects of silibinin on the viability of human choriocarcinoma (JAR and JEG3) cells. Our results showed that silibinin significantly inhibited proliferation and induced apoptosis in both JAR and JEG3 cells, and significantly increased reactive oxygen species (ROS) and lipid peroxidation. Moreover, silibinin disrupted mitochondrial function by inducing permeabilization of mitochondrial membrane potential and calcium ion efflux in JAR and JEG3 cells. Furthermore, silibinin-induced apoptosis in choriocarcinoma cells via AKT, mitogen-activated protein kinases (MAPK) and unfolded protein response (UPR) signal transduction. Collectively, our results suggest that silibinin is a novel therapeutic agent or dietary supplement for management of human placental choriocarcinomas.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A & M University, College Station, Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Xiang H, Zhong ZX, Peng YD, Jiang SW. The Emerging Role of Zfp217 in Adipogenesis. Int J Mol Sci 2017; 18:ijms18071367. [PMID: 28653987 PMCID: PMC5535860 DOI: 10.3390/ijms18071367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc finger protein 217 (Zfp217), a member of the krüppel-type zinc finger protein family, plays diverse roles in cell differentiation and development of mammals. Despite extensive research on the functions of Zfp217 in cancer, pluripotency and reprogramming, its physiological roles in adipogenesis remain unknown. Our previous RNA sequencing data suggest the involvement of Zfp217 in adipogenesis. In this study, the potential function of Zfp217 in adipogenesis was investigated through bioinformatics analysis and a series of experiments. The expression of Zfp217 was found to be gradually upregulated during the adipogenic differentiation in C3H10T1/2 cells, which was consistent with that of the adipogenic marker gene Pparg2. Furthermore, there was a positive, significant relationship between Zfp217 expression and adipocyte differentiation. It was also observed that Zfp217 could not only trigger proliferative defect in C3H10T1/2 cells, but also interact with Ezh2 and suppress the downstream target genes of Ezh2. Besides, three microRNAs (miR-503-5p, miR-135a-5p and miR-19a-3p) which target Zfp217 were found to suppress the process of adipogenesis. This is the first report showing that Zfp217 has the capacity to regulate adipogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhu-Xia Zhong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yong-Dong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Si-Wen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
13
|
Nadhan R, Vaman JV, C N, Kumar Sengodan S, Krishnakumar Hemalatha S, Rajan A, Varghese GR, Rl N, Bv AK, Thankappan R, Srinivas P. Insights into dovetailing GTD and Cancers. Crit Rev Oncol Hematol 2017; 114:77-90. [PMID: 28477749 DOI: 10.1016/j.critrevonc.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Gestational trophoblastic diseases (GTD) encompass a group of placental tumors which mostly arise due to certain fertilization defects, resulting in the over-proliferation of trophoblasts. The major characteristic of this diseased state is that β-hCG rises up manifold than that is observed during pregnancy. The incidence of GTD when analyzed on a global scale, figures out that there is a greater risk in South-East Asia, the reason of which remains unclear. An insight into any possible correlation of GTD incidence with cancers, other than choriocarcinoma, is being attempted here. Also, we review the recent developments in research on the molecular etiopathology of GTD. This review would render a wider eye towards a new paradigm of thoughts to connect GTD and breast cancer, which has not been into the picture till date.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Jayashree V Vaman
- Department of Obstetrics and Gynecology, SAT Hospital, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Nirmala C
- Department of Obstetrics and Gynecology, T D Medical College, Alappuzha, Kerala, India
| | - Satheesh Kumar Sengodan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | - Arathi Rajan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Geetu Rose Varghese
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha Rl
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Amritha Krishna Bv
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ratheeshkumar Thankappan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
14
|
Lim W, Yang C, Park S, Bazer FW, Song G. Inhibitory Effects of Quercetin on Progression of Human Choriocarcinoma Cells Are Mediated Through PI3K/AKT and MAPK Signal Transduction Cascades. J Cell Physiol 2016; 232:1428-1440. [PMID: 27714811 DOI: 10.1002/jcp.25637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
As a major dietary flavonol, quercetin mitigates proliferation and progression of cancer due to its anti-angiogenic, anti-inflammatory, anti-oxidant, and apoptotic biological effects on cells. Although its apoptotic effects have been reported for various cancers, little is known of the functional role of quercetin in gestational choriocarcinoma. Results of the present study indicated that quercetin reduced proliferation and induced cell death in two choriocarcinoma cell lines, JAR and JEG3 cells, with an increase in the sub-G1 phase of the cell cycle. In addition, quercetin induced mitochondrial dysfunction significantly reduced mitochondrial membrane potential (MMP) and increased production of reactive oxygen species (ROS) in both JAR and JEG3 cells. Further, quercetin inhibited phosphorylation of AKT, P70S6K and S6 proteins whereas, it increased phosphorylation of ERK1/2, P38, JNK and P90RSK proteins in JAR and JEG3 cells. The decrease in viability of choriocarcinoma cells treated with quercetin was confirmed by using combinations of quercetin and pharmacological inhibitors of the PI3K and MAPK signaling pathways. Classical chemotherapeutic agents, cisplatin (a platinum-based drug) and paclitaxel (a taxene-based drug), inhibited proliferation of JAR and JEG3 cells, and when combined with quercetin, the antiproliferative effects of cisplatin and paclitaxel were enhanced for both choriocarcinoma cell lines. Collectively, these results suggest that quercetin prevents development of choriocarcinoma and may be a valuable therapeutic agent for treatment of choriocarcinoma through its regulation of PI3K and MAPK signal transduction pathways. J. Cell. Physiol. 232: 1428-1440, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Lim W, Park S, Bazer FW, Song G. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways. J Cell Physiol 2016; 231:2690-9. [PMID: 26970256 DOI: 10.1002/jcp.25372] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 02/04/2023]
Abstract
Apigenin is a flavonoid found in parsley, onions, oranges, tea, chamomile, wheat, and sprouts. It has a variety of biological properties including anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, anti-proliferative, and anti-spasmodic effects. Based on epidemiological and case-control studies, apigenin is regarded as a novel chemotherapeutic agent against various cancer types. However, little is known about the effects of apigenin on choriocarcinoma cells. Therefore, we investigated the anti-cancer effects of apigenin on choriocarcinoma cells (JAR and JEG3) in the present study. Apigenin reduced viability and migratory properties, increased apoptosis, and suppressed mitochondrial membrane potential in both the JAR and JEG3 cells. In addition, apigenin predominantly decreased phosphorylation of AKT, P70RSK, and S6 whereas the phosphorylation of ERK1/2 and P90RSK was increased by apigenin treatment of JAR and JEG3 cells in a dose-dependent manner. Moreover, treatment of JAR and JEG3 cells with both apigenin and pharmacological inhibitors of PI3K/AKT (LY294002) and ERK1/2 (U0126) revealed synergistic anti-proliferative effects. Collectively, these results indicated that the apigenin is an invaluable chemopreventive agent that inhibits progression and metastasis of choriocarcinoma cells through regulation of PI3K/AKT and ERK1/2 MAPK signal transduction mechanism. J. Cell. Physiol. 231: 2690-2699, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Lim W, Yang C, Bazer FW, Song G. Chrysophanol Induces Apoptosis of Choriocarcinoma Through Regulation of ROS and the AKT and ERK1/2 Pathways. J Cell Physiol 2016; 232:331-339. [DOI: 10.1002/jcp.25423] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Whasun Lim
- Department of Biotechnology and Institute of Animal Molecular Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Changwon Yang
- Department of Biotechnology and Institute of Animal Molecular Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science; Texas A&M University; College Station Texas
| | - Gwonhwa Song
- Department of Biotechnology and Institute of Animal Molecular Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| |
Collapse
|