1
|
Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel) 2021; 13:cancers13040663. [PMID: 33562324 PMCID: PMC7915065 DOI: 10.3390/cancers13040663] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Immune checkpoint blockade targeting PD-1/PD-L1 has a promising therapeutic efficacy in different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. This review summarizes the recent findings of PD-L1 role in resistance to therapies through the PD-1/PD-L1 pathway and other correlating signaling pathways. A special focus will be given to the key mechanisms underlying resistance to the PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, we also discuss the promising combination of therapeutic strategies for patients resistant to the PD-1/PD-L1 blockade in order to enhance the efficacy of immune checkpoint inhibitors. Abstract Release of immunoreactive negative regulatory factors such as immune checkpoint limits antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resistance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. In this review, we described the utility of PD-L1 expression levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways. Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was also summarized.
Collapse
|
2
|
Chen X, Lin B, Luo M, Chu W, Li P, Liu H, Xi Z, Fan R. Identifying circRNA- and lncRNA-associated-ceRNA networks in the hippocampi of rats exposed to PM 2.5 using RNA-seq analysis. Genomics 2020; 113:193-204. [PMID: 33338629 DOI: 10.1016/j.ygeno.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
Non-coding RNAs appear to be involved in the regulation of the nervous system. However, no competing endogenous RNA (ceRNA) network related to PM2.5 damage in the hippocampal function has yet been constructed. Herein, we used whole-transcriptome sequencing technology to systematically study the ceRNA network in rat hippocampi after PM2.5 exposure. We identified 100 circRNAs, 67 lncRNAs, 28 miRNAs, and 539 mRNAs and constructed the most comprehensive ceRNA network to date, to our knowledge. Gene Ontology and KEGG analyses showed that the network molecules are involved in synapses, neural projections, and neural development and involve signal pathways such as the synaptic vesicle cycle. Finally, the expression of the differentially expressed RNAs confirmed by quantitative real-time PCR was consistent with the sequencing data. This study systematically dissected the ceRNA atlas related to cognitive memory function in the hippocampal tissue of PM2.5-exposed rats for the first time, to our knowledge, and promotes the development of potential new treatments for cognitive impairment.
Collapse
Affiliation(s)
- Xuewei Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Mingzhu Luo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Wenbin Chu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ping Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Rong Fan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Central laboratory, Tianjin Xiqing Hospital, Tianjin 300380, China.
| |
Collapse
|
3
|
Responses of oral-microflora-exposed dental pulp to capping with a triple antibiotic paste or calcium hydroxide cement in mouse molars. Regen Ther 2020; 15:216-225. [PMID: 33426222 PMCID: PMC7770410 DOI: 10.1016/j.reth.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Responses of oral-microflora-exposed dental pulp to a triple antibiotic paste (TAP), a mixture of ciprofloxacin, metronidazole, and minocycline in ointment with macrogol and propylene glycol, remain to be fully clarified at the cellular level. This study aimed to elucidate responses of oral-microflora-exposed dental pulp to capping with TAP in mouse molars. Methods A cavity was prepared on the first molars of 6-week-old mice to expose the dental pulp for 24 h. The exposed pulp was capped with TAP (TAP group) or calcium hydroxide cement (CH group), in addition to the combination of macrogol (M) and propylene glycol (P) (MP, control group), followed by a glass ionomer cement filling. The samples were collected at intervals of 1, 2, and 3 weeks, and immunohistochemistry for nestin and Ki-67 and deoxyuride-5′-triphosphate biotin nick end labeling (TUNEL) assay were performed in addition to quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Results The highest occurrence rate of pulp necrosis was found in the control group followed by the CH group at Weeks 2 and 3, whereas the highest occurrence rate of healed areas in the dental pulp was observed in the TAP group at each time point. Tertiary dentin formation was first observed in the dental pulp of the TAP group at Week 2. In contrast, bone-like and/or fibrous tissues were frequently observed in the CH group. qRT-PCR analyses clarified that TAP activated the stem and dendritic cells at Weeks 1 and 2, respectively. Conclusions The use of TAP as a pulp-capping agent improved the healing process of oral-microflora-exposed dental pulp in mouse molars. We established a mouse model to evaluate the pulpal responses to capping materials. TAP induced odontoblast-like cell differentiation faster than calcium hydroxide. Tertiary dentin was predominantly seen at the exposure site in the TAP group. TAC-P tends to activate dental pulp stem cells earlier than calcium hydroxide. TAP favored the repair process of the oral-microflora-exposed pulpal tissue.
Collapse
Key Words
- ANOVA, One-way analysis of variance
- AZAN, Azocarmine and aniline blue
- Anti-bacterial agents
- BMPs, Bone morphogenetic proteins
- Birc5, Baculoviral IAP Repeat Containing 5
- CH, Calcium hydroxide
- Cell differentiation
- Cell proliferation
- Ct, Cycle threshold
- DAP, Double antibiotic paste
- DCs, Dendritic cells
- DNA, Deoxyribonucleic acid
- DPC, Direct pulp capping
- DPSCs, Dental pulp stem cells
- Dental cavity preparation
- Dental pulp
- FGFs, Fibroblast growth factors
- GM-CSF, Granulocyte-macrophage colony-stimulating factor
- H2O2, Hydrogen peroxide
- HE, Hematoxylin-eosin
- HLA-DR-immunopositive cells, Human Leukocyte Antigen – DR isotype-immunopositive cells
- M, Macrogol
- MHC, Major histocompatibility complex
- MP, Macrogol (M) mixed with propylene glycol (P)
- MSCs, Mesenchymal stem cells
- MTA, Mineral trioxide aggregate
- Mice (crlj:CD1)
- Oct 3/4 A, Octamer binding transcription factor 3/4 A
- Oct 3/4 B, Octamer binding transcription factor 3/4 B
- P, Propylene glycol
- PBS, Phosphate-buffered saline
- Pcna, Proliferating cell nuclear antigen
- REP, Regenerative endodontic procedures
- RNA, Ribonucleic acid
- RT, Reverse transcription
- SCAP, Stem cells of the apical papilla
- Sox 10, SRY-related HMG-box 10
- TAC, Triple antibiotic combination (a mixture of metronidazole, ciprofloxacin, and minocycline)
- TAC-P, Triple antibiotic combination and propylene glycol
- TAP, Triple antibiotic paste
- TAS, Triple antibiotic solution
- TGFβ, Transforming growth factor β
- TUNEL assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay
- Tris–HCl buffer, Tris (hydroxymethyl) aminomethane (THAM) hydrochloride buffer
- Yap1, Yes-associated protein 1
- cDNA, Complementary deoxyribonucleic acid
- mRNA, Messenger ribonucleic acid
- mTAP, Modified triple antibiotic paste
- qRT-PCR, Quantitative real-time polymerase chain reaction
- αTCP, Alpha tricalcium phosphate
- β-actin, Beta-actin
Collapse
|
4
|
Minocycline mitigates the effect of neonatal hypoxic insult on human brain organoids. Cell Death Dis 2019; 10:325. [PMID: 30975982 PMCID: PMC6459920 DOI: 10.1038/s41419-019-1553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022]
Abstract
Neonatal hypoxic injury (NHI) is a devastating cause of disease that affects >60% of babies born with a very low birth weight, resulting in significant morbidity and mortality, including life-long neurological consequences such as seizures, cerebral palsy, and intellectual disability. Hypoxic injury results in increased neuronal death, which disrupts normal brain development. Although animal model systems have been useful to study the effects of NHI, they do not fully represent the uniqueness and complexities of the human brain. To better understand the effects of hypoxia on human brain development, we have generated a brain organoid protocol and evaluated these cells over the course of 6 months. As anticipated, the expression of a forebrain marker, FOXG1, increased and then remained expressed over time, while there was a transition in the expression of the deep-layer (TBR1) and upper-layer (SATB2) cortical markers. In addition, ventral genes (Eng1 and Nkx2.1) as well as markers of specialized nonneuronal cells (Olig2 and GFAP) also increased at later time points. We next tested the development of our in vitro cerebral organoid model at different oxygen concentrations and found that hypoxia repressed gene markers for forebrain, oligodendrocytes, glial cells, and cortical layers, as well as genes important for the migration of cortical neurons. In contrast, ventral markers were either unaffected or even increased in expression with hypoxic insult. Interestingly, the negative effect of hypoxia on the dorsal brain genes as well as oligodendrocytes, and neuronal progenitors could be mitigated by the use of minocycline, an FDA-approved small molecule. Taken together, we have generated a unique and relevant in vitro human brain model system to study diseases such as NHI as well as their potential treatments. Using this system, we have shown the efficacy of minocycline for human NHI.
Collapse
|
5
|
Erlandsson MC, Turkkila M, Pullerits R, Bokarewa MI. Survivin Measurement improves Clinical Prediction of Transition From Arthralgia to RA-Biomarkers to Improve Clinical Sensitivity of Transition From Arthralgia to RA. Front Med (Lausanne) 2018; 5:219. [PMID: 30116727 PMCID: PMC6082942 DOI: 10.3389/fmed.2018.00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Arthralgia often predates development of rheumatoid arthritis (RA). A set of joint symptoms commonly found in patients during their transition from arthralgia to RA, has been recently proposed. Aim: To combine clinical and serological markers and to improve recognition of imminent rheumatoid arthritis (RA) among patients with arthralgia. Methods: The total of 1,743 first-visit patients attending the rheumatology ward in Gothenburg for joint symptoms were identified during 12 consecutive months. Among those, 63 patients were classified as RA, 73 had undifferentiated arthritis and 180 had unexplained arthralgia. New RA cases, which prospectively developed during 48 months, comprised the preclinical (pre) RA group. The joint symptoms of the first-visit were analyzed aiming to distinguish patients with arthralgia and arthritis, and patients with pre-RA, who later developed the disease. The receiver operating characteristics curves were constructed. In the model, symptoms with the odds ratio >2.0 between the arthralgia and pre-RA were combined with information about RA-specific antibodies, C-reactive protein (CRP), and survivin in serum. Results: The proposed set of clinical symptoms distinguished the arthralgia patients from RA and pre-RA. Presence of survivin in serum showed strong association with clinical joint symptoms in arthralgia. A combination of symptoms in several small joint areas, increasing number of joints with symptoms, and patient's experience of swelling in small hand joints at the first visit identified pre-RA cases with 93% specificity. Grouping those symptoms with information about survivin, RA-specific antibodies, and CRP (or gender) in the final algorithm achieved 91% specificity and 55.2% of positive prediction for transition from arthralgia to RA. Conclusion: Clinical and serological parameters in combination aid recognition of imminent RA among arthralgia patients with appropriate sensitivity.
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Minna Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
PD-L1 confers resistance to EGFR mutation-independent tyrosine kinase inhibitors in non-small cell lung cancer via upregulation of YAP1 expression. Oncotarget 2017; 9:4637-4646. [PMID: 29435131 PMCID: PMC5797002 DOI: 10.18632/oncotarget.23161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand (PD-L1) expression was associated with tumor immune escape and subsequent poor prognosis in non-small cell lung cancer (NSCLC). This expression was higher in patients with EGFR-mutated NSCLC tumors than in those with EGFR-wild-type (WT) NSCLC tumors. We therefore hypothesized that poor prognosis mediated by higher PD-L1 may be partially through conferring resistance to tyrosine kinase inhibitor (TKI) in NSCLC regardless of EGFR mutation. The change in PD-L1 expression following gene manipulation corresponded with changes in expression of HIF-1α and YAP1. The expression of HIF-1α and YAP1 was concomitantly decreased by PD-L1 silencing or by ROS scavenger treatment (N-acetylcysteine, NAC); however, a ROS inducer treatment (pyocyanin) completely reversed the decreased expression of both genes in EGFR-mutated and -wild-type (WT) NSCLC cells. The MTT assay indicated that the inhibitory concentration of gefitinib yielding 50% cell viability (IC50) depended on PD-L1-mediated YAP1 expression. Mechanistic studies indicated that upregulation of YAP1 by PD-L1 might be responsible for EGFR mutation-independent TKI resistance via the ROS/HIF-1α axis. An unfavorable TKI response was more common in patient tumors with high PD-L1 or YAP1 mRNA expression than in patient tumors with low mRNA expression of these genes. In conclusion, PD-L1 might confer EGFR mutation-independent TKI resistance in NSCLC cells via upregulation of YAP1 expression.
Collapse
|
7
|
Gravina G, Wasén C, Garcia-Bonete MJ, Turkkila M, Erlandsson MC, Töyrä Silfverswärd S, Brisslert M, Pullerits R, Andersson KM, Katona G, Bokarewa MI. Survivin in autoimmune diseases. Autoimmun Rev 2017; 16:845-855. [PMID: 28564620 DOI: 10.1016/j.autrev.2017.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Survivin is a protein functionally important for cell division, apoptosis, and possibly, for micro-RNA biogenesis. It is an established marker of malignant cell transformation. In non-malignant conditions, the unique properties of survivin make it indispensable for homeostasis of the immune system. Indeed, it is required for the innate and adaptive immune responses, controlling differentiation and maintenance of CD4+ and CD8+ memory T-cells, and in B cell maturation. Recently, survivin has emerged as an important player in the pathogenesis of autoimmune diseases. Under the conditions of unreserved inflammation, survivin enhances antigen presentation, maintains persistence of autoreactive cells, and supports production of autoantibodies. In this context, survivin takes its place as a diagnostic and prognostic marker in rheumatoid arthritis, psoriasis, systemic sclerosis and pulmonary arterial hypertension, neuropathology and multiple sclerosis, inflammatory bowel diseases and oral lichen planus. In this review, we summarise the knowledge about non-malignant properties of survivin and focus on its engagement in cellular and molecular pathology of autoimmune diseases. The review highlights utility of survivin measures for clinical applications. It provides rational for the survivin inhibiting strategies and presents results of recent reports on survivin inhibition in modern therapies of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- G Gravina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M J Garcia-Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - S Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - R Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - K M Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Li Q, Michaud M, Shankar R, Canosa S, Schwartz M, Madri JA. MMP-2: A modulator of neuronal precursor activity and cognitive and motor behaviors. Behav Brain Res 2017; 333:74-82. [DOI: 10.1016/j.bbr.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
9
|
The role of endothelial HIF-1 αin the response to sublethal hypoxia in C57BL/6 mouse pups. J Transl Med 2017; 97:356-369. [PMID: 28092362 DOI: 10.1038/labinvest.2016.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic sublethal hypoxia, a complication of premature birth, is associated with cognitive and motor handicaps. Responsiveness to and recovery from this hypoxic environment is dependent on induction of HIF-1 α in the cells affected. Microvascular endothelial-glial and microvascular endothelial-neuronal precursor interactions have been found to be dynamic and reciprocal, involving autocrine and paracrine signaling, with response and recovery correlated with baseline levels and levels of induction of HIF-1 α.To ascertain the roles of endothelial HIF-1 α in the responses of brain microvascular endothelial cells (EC) and neuronal precursors to hypoxia, we examined the effects of the presence and absence of endothelial HIF-1 α expression in culture and in cells comprising the subventricular zone (SVZ) and dentate gyrus under normoxic and hypoxic conditions. We used C57BL/6 WT and EC HIF-1 α -deficient mice and brain microvascular ECs isolated from these mice in western blots, immunofluorescence, and behavioral studies to examine the roles of EC HIF-1 α behaviors of endothelial and neuronal precursor cells (NPCs) in SVZ and hippocampal tissues under normoxic and hypoxic conditions and behaviors of these mice in open field activity tests. Analyses of ECs and SVZ and dentate gyrus tissues revealed effects of the absence of endothelial HIF-1 α on proliferation and apoptosis as well as open field activity, with both ECs and neuronal cells exhibiting decreased proliferation, increased apoptosis, and pups exhibiting gender-specific differences in open field activities. Our studies demonstrate the autocrine and paracrine effects of EC HIF-1 α-modulating proliferative and apoptotic behaviors of EC and NPC in neurogenic regions of the brain and gender-specific behaviors in normoxic and hypoxic settings.
Collapse
|