1
|
Plantone D, Primiano G, Righi D, Romano A, Luigetti M, De Stefano N. Current Evidence Supporting the Role of Immune Response in ATTRv Amyloidosis. Cells 2023; 12:2383. [PMID: 37830598 PMCID: PMC10572348 DOI: 10.3390/cells12192383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Hereditary transthyretin (ATTRv) amyloidosis with polyneuropathy, also known as familial amyloid polyneuropathy (FAP), represents a progressive, heterogeneous, severe, and multisystemic disease caused by pathogenic variants in the TTR gene. This autosomal-dominant neurogenetic disorder has an adult onset with variable penetrance and an inconstant phenotype, even among subjects carrying the same mutation. Historically, ATTRv amyloidosis has been viewed as a non-inflammatory disease, mainly due to the absence of any mononuclear cell infiltration in ex vivo tissues; nevertheless, a role of inflammation in its pathogenesis has been recently highlighted. The immune response may be involved in the development and progression of the disease. Fibrillary TTR species bind to the receptor for advanced glycation end products (RAGE), probably activating the nuclear factor κB (NF-κB) pathway. Moreover, peripheral blood levels of several cytokines, including interferon (IFN)-gamma, IFN-alpha, IL-6, IL-7, and IL-33, are altered in the course of the disease. This review summarizes the current evidence supporting the role of the immune response in ATTRv amyloidosis, from the pathological mechanisms to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| | - Angela Romano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Luigetti
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| |
Collapse
|
2
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
3
|
Moreira J, Costelha S, Saraiva M, Saraiva MJ. The Expression of Chemokines Is Downregulated in a Pre-Clinical Model of TTR V30M Amyloidosis. Front Immunol 2021; 12:650269. [PMID: 34093538 PMCID: PMC8170140 DOI: 10.3389/fimmu.2021.650269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Inflammation is a hallmark of several neurodegenerative disorders including hereditary amyloidogenic transthyretin amyloidosis (ATTRv). ATTRv is an autosomal dominant neurodegenerative disorder with extracellular deposition of mutant transthyretin (TTR) aggregates and fibrils, particularly in nerves and ganglia of the peripheral nervous system. Nerve biopsies from ATTRv patients show increased cytokine production, but interestingly no immune inflammatory cellular infiltrate is observed around TTR aggregates. Here we show that as compared to Wild Type (WT) animals, the expression of several chemokines is highly downregulated in the peripheral nervous system of a mouse model of the disease. Interestingly, we found that stimulation of mouse Schwann cells (SCs) with WT TTR results in the secretion of several chemokines, a process that is mediated by toll-like receptor 4 (TLR4). In contrast, the secretion of all tested chemokines is compromised upon stimulation of SCs with mutant TTR (V30M), suggesting that V30M TTR fails to activate TLR4 signaling. Altogether, our data shed light into a previously unappreciated mechanism linking TTR activation of SCs and possibly underlying the lack of inflammatory response observed in the peripheral nervous system of ATTRv patients.
Collapse
Affiliation(s)
- João Moreira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Susete Costelha
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Maria João Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Mohamed HRH, El-Atawy RH, Ghoneim AM, El-Ghor AA. Induction of fetal abnormalities and genotoxicity by molybdenum nanoparticles in pregnant female mice and fetuses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23950-23962. [PMID: 32304059 DOI: 10.1007/s11356-020-08137-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Increasing the uses of molybdenum (Mo) nanoparticles in a wide range of applications including food, industry, and medicine, resulted in increased human exposure and necessitated the study of their toxic effects. However, almost no studies are available on their genotoxic effects, especially on pregnant females and their fetuses. Therefore, this study was undertaken to estimate the possible induction of genotoxicity and fetal abnormalities, especially fetal malformations and skeletal abnormalities by Mo nanoparticle administration in mice. Oral administration of Mo nanoparticles resulted in significant decreases in the maternal body weight, the number and length of fetuses as well as skeletal abnormalities mainly less ossification and less chondrification. Administration of Mo nanoparticles also caused DNA damage induction which elevated the expression levels of p53, the vital gene in maintaining the genomic stability and cell differentiation in both maternal and fetus tissues. Similarly, the expression levels of E-Cad and N-Cad genes that control skeleton development have also been increased in the tissues of female mice administered Mo nanoparticles and their fetuses. Thus, we concluded that oral administration of Mo nanoparticles induced genotoxic effects and fetal abnormalities that necessitated further studies on the possible toxic effects of Mo nanoparticles.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University Giza Egypt, Giza, Egypt.
| | - Radwa H El-Atawy
- Zoology Department, Faculty of Science, Damietta University New Damietta Egypt, Damieta, Egypt
| | - Ahmed M Ghoneim
- Zoology Department, Faculty of Science, Damietta University New Damietta Egypt, Damieta, Egypt
| | - Akmal A El-Ghor
- Zoology Department, Faculty of Science, Cairo University Giza Egypt, Giza, Egypt
| |
Collapse
|
5
|
Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin Sci (Lond) 2017; 131:395-409. [PMID: 28213611 DOI: 10.1042/cs20160413] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) amyloidosis (ATTR amyloidosis) is an underdiagnosed and important type of cardiomyopathy and/or polyneuropathy that requires increased awareness within the medical community. Raising awareness among clinicians about this type of neuropathy and lethal form of heart disease is critical for improving earlier diagnosis and the identification of patients for treatment. The following review summarizes current criteria used to diagnose both hereditary and wild-type ATTR (ATTRwt) amyloidosis, tools available to clinicians to improve diagnostic accuracy, available and newly developing therapeutics, as well as a brief biochemical and biophysical background of TTR amyloidogenesis.
Collapse
|
6
|
Gonçalves NP, Moreira J, Martins D, Vieira P, Obici L, Merlini G, Saraiva M, Saraiva MJ. Differential expression of Cathepsin E in transthyretin amyloidosis: from neuropathology to the immune system. J Neuroinflammation 2017; 14:115. [PMID: 28583160 PMCID: PMC5460450 DOI: 10.1186/s12974-017-0891-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence supports a key role for inflammation in the neurodegenerative process of familial amyloidotic polyneuropathy (FAP). While there seems to be an overactivation of the neuronal interleukin-1 signaling pathway, the immune response is apparently compromised in FAP. Accordingly, little immune cell infiltration is observed around pre-fibrillar or fibrillar amyloid deposits, with the underlying mechanism for this phenomenon remaining poorly understood. Cathepsin E (CtsE) is an important intermediate for antigen presentation and chemotaxis, but its role in the pathogenesis of FAP disease remains unknown. Methods In this study, we used both mouse primary macrophages and in vivo studies based on transgenic models of FAP and human samples to characterize CtsE expression in different physiological systems. Results We show that CtsE is critically decreased in bone marrow-derived macrophages from a FAP mouse model, possibly contributing for cell function impairment. Compromised levels of CtsE were also found in injured nerves of transgenic mice and, most importantly, in naïve peripheral nerves, sensory ganglia, murine stomach, and sural nerve biopsies derived from FAP patients. Expression of CtsE in tissues was associated with transthyretin (TTR) deposition and differentially regulated accordingly with the physiological system under study. Preventing deposition with a TTR small interfering RNA rescued CtsE in the peripheral nervous system (PNS). In contrast, the expression of CtsE increased in splenic cells (mainly monocytes) or peritoneal macrophages, indicating a differential macrophage phenotype. Conclusion Altogether, our data highlights the potential of CtsE as a novel FAP biomarker and a possible modulator for innate immune cell chemotaxis to the disease most affected tissues—the peripheral nerve and the gastrointestinal tract. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0891-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nádia Pereira Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Molecular Neurobiology Group, IBMC - Institute for Molecular and Cell Biology, University of Porto, 4150-180, Porto, Portugal.,Present address: Department of Biomedicine/DANDRITE, Aarhus University, Ole Worms Alle 3, 1171, 8000, Aarhus C, Denmark
| | - João Moreira
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Molecular Neurobiology Group, IBMC - Institute for Molecular and Cell Biology, University of Porto, 4150-180, Porto, Portugal
| | - Diana Martins
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Molecular Neurobiology Group, IBMC - Institute for Molecular and Cell Biology, University of Porto, 4150-180, Porto, Portugal
| | - Paulo Vieira
- Unité du Développement des Lymphocytes, Département d'Immunologie, Institut Pasteur, Paris, 75724 CEDEX 15, France
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Immune Regulation Group, IBMC - Institute for Molecular and Cell Biology, University of Porto, 4150-180, Porto, Portugal
| | - Maria João Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Molecular Neurobiology Group, IBMC - Institute for Molecular and Cell Biology, University of Porto, 4150-180, Porto, Portugal.
| |
Collapse
|
7
|
Gonçalves NP, Martins D, Saraiva MJ. The importance of pre-clinical studies in animal models of TTR amyloidosis for the discovery of novel patient disease biomarkers. Amyloid 2017; 24:83-84. [PMID: 28434291 DOI: 10.1080/13506129.2016.1278362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- N P Gonçalves
- a Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto , Portugal and.,b IBMC Unidade de Neurobiologia Molecular, Universidade do Porto , Portugal
| | - D Martins
- a Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto , Portugal and.,b IBMC Unidade de Neurobiologia Molecular, Universidade do Porto , Portugal
| | - M J Saraiva
- a Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto , Portugal and.,b IBMC Unidade de Neurobiologia Molecular, Universidade do Porto , Portugal
| |
Collapse
|