1
|
Fang B, Huang Z, Sun Y, Zhang W, Yu J, Zhang J, Dong H, Wang S. Small RNA sequencing provides insights into molecular mechanism of flower development in Rhododendron pulchrum Sweet. Sci Rep 2023; 13:17912. [PMID: 37864069 PMCID: PMC10589353 DOI: 10.1038/s41598-023-44779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Rhododendron pulchrum sweet, a member of the Ericaceae family possessing valuable horticultural properties, is widely distributed in the temperate regions. Though serving as bioindicator of metal pollution, the molecular mechanism regulating flowering in R. pulchrum is very limited. Illumina sequencing was performed to identify critical miRNAs in the synthesis of flavonoids at different developmental stages. Totally, 722 miRNAs belonging to 104 families were screened, and 84 novel mature miRNA sequences were predicted. The miR166, miR156, and miR167-1 families were dominant. In particular, 126 miRNAs were significantly differentially expressed among four different flowering stages. Totally, 593 genes were differentially regulated by miRNAs during the flower development process, which were mostly involved in "metabolic pathways", "plant hormone signal transduction", and "mitosis and regulation of biosynthetic processes". In pigment biosynthesis and signal transduction processes, gra-miR750 significantly regulated the expression of flavonoid 3',5'-hydroxylase; aof-miR171a, aof-miR171b, aof-miR171c, cas-miR171a-3p, and cas-miR171c-3p could regulate the expression of DELLA protein; aof-miR390, aof-miR396b, ath-miR3932b-5p, cas-miR171a-3p, aof-miR171a, and aof-miR171b regulated BAK1 expression. This research showed great potentials for genetic improvement of flower color traits for R. pulchrum and other Rhododendron species.
Collapse
Affiliation(s)
- Bo Fang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Zhiwei Huang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Yirong Sun
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Wanjing Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Jiaojun Yu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Jialiang Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Hongjin Dong
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Shehab-Eldeen S, Metwaly MF, Saber SM, El-Kousy SM, Badr EAE, Essa A. MicroRNA-29a and MicroRNA-124 as novel biomarkers for hepatocellular carcinoma. Dig Liver Dis 2023; 55:283-290. [PMID: 35525722 DOI: 10.1016/j.dld.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Numerous microRNAs (miRNAs) have been observed to be abnormally expressed in cancer. Therefore, miRNA signatures could be potential noninvasive diagnostic and prognostic biomarkers for hepatocellular carcinoma (HCC). AIMS To correlate miRNA-29a and miRNA-124 expression levels with the clinical features and survival rates of HCC patients. METHODS Serum miRNA expression in 150 samples (50 patients with HCC, 50 patients with liver cirrhosis, and 50 healthy controls) were quantified using real-time qRT-PCR. RESULTS The expression levels of serum miRNA-29a were higher and the levels of miRNA-124 were lower in patients with HCC than in patients with liver cirrhosis and controls. ROC curve analysis showed promising accuracy for both miRNAs in distinguishing patients with HCC from those with liver cirrhosis. Levels of miRNA-29a were related to tumor number, size, stage, and outcome, whereas levels of miRNA-124 were related to vascular invasion. The overall survival rate of patients with low miRNA-29a expression was significantly higher than that of patients with high expression. Additionally, the multivariate analysis identified miRNA-29a as an independent prognostic variable. CONCLUSIONS The investigated miRNAs showed acceptable accuracy in the diagnosis of HCC; therefore, both could be utilized as diagnostic biomarkers. Additionally, miRNA-29a could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt; Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa 31982, Saudi Arabia.
| | - Mohamed F Metwaly
- Chemist at Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Safa M Saber
- Chemist at Clinical Laboratory Department, Student hospital, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Salah M El-Kousy
- Organic Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Eman A E Badr
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt; Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
| |
Collapse
|
3
|
de la Cruz-Ojeda P, Schmid T, Boix L, Moreno M, Sapena V, Praena-Fernández JM, Castell FJ, Falcón-Pérez JM, Reig M, Brüne B, Gómez-Bravo MA, Giráldez Á, Bruix J, Ferrer MT, Muntané J. miR-200c-3p, miR-222-5p, and miR-512-3p Constitute a Biomarker Signature of Sorafenib Effectiveness in Advanced Hepatocellular Carcinoma. Cells 2022; 11:cells11172673. [PMID: 36078082 PMCID: PMC9454520 DOI: 10.3390/cells11172673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sorafenib constitutes a suitable treatment alternative for patients with advanced hepatocellular carcinoma (HCC) in whom atezolizumab + bevacizumab therapy is contraindicated. The aim of the study was the identification of a miRNA signature in liquid biopsy related to sorafenib response. Methods: miRNAs were profiled in hepatoblastoma HepG2 cells and tested in animal models, extracellular vesicles (EVs), and plasma from HCC patients. Results: Sorafenib altered the expression of 11 miRNAs in HepG2 cells. miR-200c-3p and miR-27a-3p exerted an anti-tumoral activity by decreasing cell migration and invasion, whereas miR-122-5p, miR-148b-3p, miR-194-5p, miR-222-5p, and miR-512-3p exerted pro-tumoral properties by increasing cell proliferation, migration, or invasion, or decreasing apoptosis. Sorafenib induced a change in EVs population with an increased number of larger EVs, and promoted an accumulation of miR-27a-3p, miR-122-5p, miR-148b-3p, miR-193b-3p, miR-194-5p, miR-200c-3p, and miR-375 into exosomes. In HCC patients, circulating miR-200c-3p baseline levels were associated with increased survival, whereas high levels of miR-222-5p and miR-512-3p after 1 month of sorafenib treatment were related to poor prognosis. The RNA sequencing revealed that miR-200c-3p was related to the regulation of cell growth and death, whereas miR-222-5p and miR-512-3p were related to metabolic control. Conclusions: The study showed that Sorafenib regulates a specific miRNA signature in which miR-200c-3p, miR-222-5p, and miR-512-3p bear prognostic value and contribute to treatment response.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
| | - Loreto Boix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Manuela Moreno
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Víctor Sapena
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | | | - Francisco J. Castell
- Department of Radiology, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Juan Manuel Falcón-Pérez
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Exosomes Lab, CIC bioGUNE, 48160 Derio, Spain
| | - María Reig
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60528 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60528 Frankfurt, Germany
| | - Miguel A. Gómez-Bravo
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Álvaro Giráldez
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Bruix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - María T. Ferrer
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
- Correspondence: ; Tel.: +34-955-923-122; Fax: +34-955-923-002
| |
Collapse
|
4
|
Al Hrout A, Cervantes-Gracia K, Chahwan R, Amin A. Modelling liver cancer microenvironment using a novel 3D culture system. Sci Rep 2022; 12:8003. [PMID: 35568708 PMCID: PMC9107483 DOI: 10.1038/s41598-022-11641-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment and its contribution to tumorigenesis has been a focal highlight in recent years. A two-way communication between the tumor and the surrounding microenvironment sustains and contributes to the growth and metastasis of tumors. Progression and metastasis of hepatocellular carcinoma (HCC) have been reported to be exceedingly influenced by diverse microenvironmental cues. In this study, we present a 3D-culture model of liver cancer to better mimic in vivo tumor settings. By creating novel 3D co-culture model that combines free-floating and scaffold-based 3D-culture techniques of liver cancer cells and fibroblasts, we aimed to establish a simple albeit reproducible ex vivo cancer microenvironment model that captures tumor-stroma interactions. The model presented herein exhibited unique gene expression and protein expression profiles when compared to 2D and 3D mono-cultures of liver cancer cells. Our results showed that in vivo like conditions cannot be mimicked by simply growing cancer cells as spheroids, but by co-culturing them with 3D fibroblast with which they were able to crosstalk. This was evident by the upregulation of several pathways involved in HCC, and the increase in secreted factors by co-cultured cancer cells, many of which are also involved in tumor-stroma interactions. Compared to the conventional 2D culture, the proposed model exhibits an increase in the expression of genes associated with development, progression, and poor prognosis of HCC. Our results correlated with an aggressive outcome that better mirrors in vivo HCC, and therefore, a more reliable platform for molecular understanding of HCC.
Collapse
Affiliation(s)
- Ala'a Al Hrout
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Karla Cervantes-Gracia
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Amr Amin
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Gharib AF, Eed EM, Khalifa AS, Raafat N, Shehab-Eldeen S, Alwakeel HR, Darwiesh E, Essa A. Value of Serum miRNA-96-5p and miRNA-99a-5p as Diagnostic Biomarkers for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2427-2436. [PMID: 35264879 PMCID: PMC8901257 DOI: 10.2147/ijgm.s354842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Circulatory microRNAs (miRNAs) have the potential to be employed as markers for cancer detection and as prognostic tools for disease management. As a result, our goal was to explore the effectiveness of serum miRNA-96-5p and miRNA-99a-5p as diagnostic tools in hepatocellular carcinoma (HCC). Patients and methods Blood samples were collected from 55 patients with HCV-induced HCC, 55 patients with HCV-induced liver cirrhosis, and 55 healthy controls. The expression levels of miRNA-96-5p and miRNA-99a-5p were measured using quantitative RT-PCR. Results miRNA-96-5p expression levels were increased in HCC patient sera, while miRNA-99a-5p levels were reduced. According to ROC curve analysis, using a combination of circulating miRNA-96-5p, miRNA-99a-5-, and alpha-fetoprotein (AFP) improves the accuracy of diagnoses for HCC, with an area under the curve (AUC) of 0.97, compared to AUCs of 0.82, 0.86, and 0.73, respectively, for the individual biomarkers. Furthermore, the present data suggested that higher serum miRNA-96-5p levels were linked to larger tumors and metastasis, whereas lower serum miRNA-99a-5p levels were exclusively linked to HCC metastasis. Conclusion Using miRNA-96-5p and miRNA-99a-5p in combination with AFP increased both sensitivity and specificity for the diagnosis of HCC. Furthermore, serum levels were linked to tumor size and metastasis. These findings suggested that serum miRNA-96-5p and miRNA-99a-5p could be used as non-invasive biomarkers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Amal F Gharib
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Emad M Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Amany S Khalifa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
- Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
- Correspondence: Somaia Shehab-Eldeen, Tropical Medicine Department, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shebin El-Kom, 32511, Egypt, Tel +20 1117251523, Email
| | - Hany R Alwakeel
- Department of Hepatology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Ehab Darwiesh
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
- Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
| |
Collapse
|
6
|
Li FY, Fan TY, Zhang H, Sun YM. Demethylation of miR-34a upregulates expression of membrane palmitoylated proteins and promotes the apoptosis of liver cancer cells. World J Gastroenterol 2021; 27:470-486. [PMID: 33642822 PMCID: PMC7896437 DOI: 10.3748/wjg.v27.i6.470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer is a common cancer and the main cause of cancer-related deaths worldwide. Liver cancer is the sixth most common cancer in the world. Although miR-34a and palmitoyl membrane palmitoylated protein (MPP2) are reportedly involved in various cell processes, their precise roles in liver cancer are still unclear.
AIM To investigate the expression of micro RNA 34a (miR-34a), methylation of the miR-34a promoter and the expression of MPP2 in liver cancer cells and their related mechanisms.
METHODS Together, 78 cases of liver cancer tissues and 78 cases of adjacent tissues were collected. The methylation degree of miR-34a promoter in liver cancer/ paracancerous tissue and liver cancer cells/normal liver cells, and the expression levels of miR-34a and MPP2 in the above samples were detected. Demethylation of liver cancer cells or transfection of liver cancer cells with miR-34a mimetic was performed. The MPP2 overexpression vector was used to transfect liver cancer cells, and the changes in proliferation, invasion, apoptosis, migration, and other biological functions of liver cancer cells after the above interventions were observed. Double luciferase reporter genes were used to detect the targeting relationship between miR-34a and MPP2.
RESULTS Clinical samples showed that the expression levels of miR-34a and MPP2 in liver cancer tissues were lower than those in the normal tissues. The methylation degree of miR-34a promoter region in liver cancer cells was higher than that in normal liver cells. After miR-34a demethylation/mimetic transfection/MPP2 overexpression, the apoptosis of liver cancer cells was increased; the proliferation, invasion and migration capabilities were decreased; the expression levels of caspase 3, caspase 9, E-cadherin, and B-cell lymphoma 2 (Bcl-2)-associated X protein were increased; and the expression levels of Bcl-2, N-cadherin, and β-catenin were decreased. Double luciferase reporter genes confirmed that MPP2 is targeted by miR-34a. Rescue experiments showed that small interfering MPP2 could counteract the promoting effect of miR-34a demethylation on apoptosis and the inhibitory effect on cell proliferation, invasion, and migration.
CONCLUSION miR-34a demethylation upregulates the expression level of MPP2 in liver cancer cells and promotes the apoptosis of liver cancer cells. miR-34a demethylation is a potential method for liver cancer treatment.
Collapse
Affiliation(s)
- Fu-Yong Li
- Department of Interventional Radiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| | - Ting-Yong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Hao Zhang
- Department of Endoscopy, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yu-Min Sun
- Department of Cardiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| |
Collapse
|
7
|
Romualdo GR, Prata GB, da Silva TC, Evangelista AF, Reis RM, Vinken M, Moreno FS, Cogliati B, Barbisan LF. The combination of coffee compounds attenuates early fibrosis-associated hepatocarcinogenesis in mice: involvement of miRNA profile modulation. J Nutr Biochem 2020; 85:108479. [PMID: 32795656 DOI: 10.1016/j.jnutbio.2020.108479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Aberrant microRNA expression implicates on hepatocellular carcinoma (HCC) development. Conversely, coffee consumption reduces by ~40% the risk for fibrosis/cirrhosis and HCC, while decaffeinated coffee does not. It is currently unknown whether these protective effects are related to caffeine (CAF), or to its combination with other common and/or highly bioavailable coffee compounds, such as trigonelline (TRI) and chlorogenic acid (CGA). We evaluated whether CAF individually or combined with TRI and/or CGA alleviates fibrosis-associated hepatocarcinogenesis, examining the involvement of miRNA profile modulation. Then, male C3H/HeJ mice were submitted to a diethylnitrosamine/carbon tetrachloride-induced model. Animals received CAF (50 mg/kg), CAF+TRI (50 and 25 mg/kg), CAF+CGA (50 and 25 mg/kg) or CAF+TRI+CGA (50, 25 and 25 mg/kg), intragastrically, 5×/week, for 10 weeks. Only CAF+TRI+CGA combination reduced the incidence, number and proliferation (Ki-67) of hepatocellular preneoplastic foci while enhanced apoptosis (cleaved caspase-3) in adjacent parenchyma. CAF+TRI+CGA treatment also decreased hepatic oxidative stress and enhanced the antioxidant Nrf2 axis. CAF+TRI+CGA had the most pronounced effects on decreasing hepatic pro-inflammatory IL-17 and NFκB, contributing to reduce CD68-positive macrophage number, stellate cell activation, and collagen deposition. In agreement, CAF+TRI+CGA upregulated tumor suppressors miR-144-3p, miR-376a-3p and antifibrotic miR-15b-5p, frequently deregulated in human HCC. CAF+TRI+CGA reduced the hepatic protein levels of pro-proliferative EGFR (miR-144-3p target), antiapoptotic Bcl-2 family members (miR-15b-5p targets), and the number of PCNA (miR-376a-3p target) positive hepatocytes in preneoplastic foci. Our results suggest that the combination of most common and highly bioavailable coffee compounds, rather than CAF individually, attenuates fibrosis-associated hepatocarcinogenesis by modulating miRNA expression profile.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, - SP, Brazil
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, - SP, Brazil
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, - SP, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, - SP, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, - SP, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, - SP, Brazil
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, - SP, Brazil.
| |
Collapse
|
8
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
9
|
Pratedrat P, Chuaypen N, Nimsamer P, Payungporn S, Pinjaroen N, Sirichindakul B, Tangkijvanich P. Diagnostic and prognostic roles of circulating miRNA-223-3p in hepatitis B virus-related hepatocellular carcinoma. PLoS One 2020; 15:e0232211. [PMID: 32330203 PMCID: PMC7182200 DOI: 10.1371/journal.pone.0232211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circulating microRNAs (miRNAs) have been shown to dysregulate in many cancer types including hepatocellular carcinoma (HCC). The purpose of this study was to examine the potential diagnostic or prognostic roles of circulating miRNAs in patients with hepatitis B virus (HBV)-related HCC. Methods Paired cancerous and adjacent non-cancerous liver tissue specimens of patients with HBV-related HCC were used as a discovery set for screening 800 miRNAs by a Nanostring quantitative assay. Differentially expressed miRNAs were then examined by SYBR green quantitative RT-PCR in a validation cohort of serum samples obtained from 70 patients with HBV-related HCC, 70 HBV patients without HCC and 50 healthy controls. Results The discovery set identified miR-223-3p, miR-199a-5p and miR-451a significantly lower expressed in cancerous tissues compared with non-cancerous tissues. In the validated cohort, circulating miR-223-3p levels were significantly lower in the HCC group compared with the other groups. The combined use of serum alpha-fetoprotein and miR-223-3p displayed high sensitivity for detecting early HCC (85%) and intermediate/advanced stage HCC (100%). Additionally, serum miR-223-3p had a negative correlation with tumor size and BCLC stage. On multivariate analysis, serum miR-223-3p was identified as an independent prognostic factor of overall survival in patients with HCC. In contrast, circulating miRNA-199a-5p and miR-451a did not show any clinical benefit for the diagnosis and prognostic prediction of HCC. Conclusions Our results demonstrated that miR-223-3p was differentially expressed in cancerous compared with paired adjacent non-cancerous tissues. In addition, circulating miRNA-223-3p could represent a novel diagnostic and prognostic marker for patients with HBV-related HCC.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
Liu XX, Luo XF, Luo KX, Liu YL, Pan T, Li ZZ, Duns GJ, He FL, Qin ZD. Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. Int J Biol Sci 2019; 15:416-429. [PMID: 30745831 PMCID: PMC6367553 DOI: 10.7150/ijbs.26884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
Abstract
To obtain insight into the function of miRNAs in the synthesis and storage of important nutrients during the development of Camellia oleifera fruit, Illumina sequencing of flower and fruit small-RNA was conducted. The results revealed that 797 miRNAs were significantly differentially expressed between flower and fruit samples of Camellia oleifera. Through integrated GO and KEGG function annotations, it was determined that the miRNA target genes were mainly involved in metabolic pathways, plant hormone signal transduction, fruit development, mitosis and regulation of biosynthetic processes. Carbohydrate accumulation genes were differentially regulated by miR156, miR390 and miR395 in the fruit growth and development process. MiR477 is the key miRNA functioning in regulation of genes and involved in fatty acid synthesis. Additionally, miR156 also has the function of regulating glycolysis and nutrient transformation genes.
Collapse
Affiliation(s)
- Xiao-Xia Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xiao-Fang Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ke-Xin Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ya-Lin Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ting Pan
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zhi-Zhang Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Gregory J Duns
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Fu-Lin He
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zuo-Dong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
11
|
Rudini N, Novello C, Destro A, Riboldi E, Donadon M, Viganò L, Morenghi E, Roncalli M, Di Tommaso L. Phenotypic and molecular changes in nodule-in-nodule hepatocellular carcinoma with pathogenetic implications. Histopathology 2018; 73:601-611. [PMID: 29791027 DOI: 10.1111/his.13659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Noemi Rudini
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Chiara Novello
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Annarita Destro
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Elena Riboldi
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale ‘Amedeo Avogadro’; Novara Itlay
| | - Matteo Donadon
- Surgical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Luca Viganò
- Surgical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Emanuela Morenghi
- Biostatistical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Massimo Roncalli
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Luca Di Tommaso
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| |
Collapse
|
12
|
Vittoria MA, Shenk EM, O'Rourke KP, Bolgioni AF, Lim S, Kacprzak V, Quinton RJ, Ganem NJ. A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Mol Biol Cell 2018; 29:1682-1692. [PMID: 29791254 PMCID: PMC6080710 DOI: 10.1091/mbc.e18-02-0141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tetraploid cells, which are most commonly generated by errors in cell division, are genomically unstable and have been shown to promote tumorigenesis. Recent genomic studies have estimated that ∼40% of all solid tumors have undergone a genome-doubling event during their evolution, suggesting a significant role for tetraploidy in driving the development of human cancers. To safeguard against the deleterious effects of tetraploidy, nontransformed cells that fail mitosis and become tetraploid activate both the Hippo and p53 tumor suppressor pathways to restrain further proliferation. Tetraploid cells must therefore overcome these antiproliferative barriers to ultimately drive tumor development. However, the genetic routes through which spontaneously arising tetraploid cells adapt to regain proliferative capacity remain poorly characterized. Here, we conducted a comprehensive gain-of-function genome-wide screen to identify microRNAs (miRNAs) that are sufficient to promote the proliferation of tetraploid cells. Our screen identified 23 miRNAs whose overexpression significantly promotes tetraploid proliferation. The vast majority of these miRNAs facilitate tetraploid growth by enhancing mitogenic signaling pathways (e.g., miR-191-3p); however, we also identified several miRNAs that impair the p53/p21 pathway (e.g., miR-523-3p), and a single miRNA (miR-24-3p) that potently inactivates the Hippo pathway via down-regulation of the tumor suppressor gene NF2. Collectively, our data reveal several avenues through which tetraploid cells may regain the proliferative capacity necessary to drive tumorigenesis.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Elizabeth M Shenk
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Department of Biomedical Engineering, Boston University, Boston, MA 02118
| | - Kevin P O'Rourke
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | - Amanda F Bolgioni
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Sanghee Lim
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Victoria Kacprzak
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Ryan J Quinton
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Neil J Ganem
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|