1
|
Luo M, Xing Z, Gou Y, Yang X, Zhang X, Yu W, Lv H. Associations Between the Gut Microbiota and Its Related Metabolic Pathways and Uveitis: A Bidirectional Two-Sample Mendelian Randomization Study. Transl Vis Sci Technol 2025; 14:15. [PMID: 40358579 DOI: 10.1167/tvst.14.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Affiliation(s)
- Maomei Luo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhen Xing
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yanhao Gou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianlin Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wei Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
2
|
PK L, Pawar RS, Katare YK, Sudheesh MS. Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma. ACS Pharmacol Transl Sci 2025; 8:932-950. [PMID: 40242585 PMCID: PMC11997897 DOI: 10.1021/acsptsci.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach. The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system. Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity. In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.
Collapse
Affiliation(s)
- Lakshmi PK
- Dept.
of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| | | | - Yogesh Kumar Katare
- Truba
Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal 462038, India
| | - MS Sudheesh
- Dept.
of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| |
Collapse
|
3
|
Berzack S, Galor A. Microbiome-based therapeutics for ocular diseases. Clin Exp Optom 2025; 108:115-122. [PMID: 39617011 PMCID: PMC11875938 DOI: 10.1080/08164622.2024.2422479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024] Open
Abstract
The relationship between the gut microbiome and ocular health has garnered increasing attention within the scientific community. Recent research has focused on the gut-eye axis, examining whether imbalances within the gut microbiome can influence the development, progression and severity of ocular diseases, including dry eye disease, uveitis, and glaucoma. Dysbiosis within the gut microbiome is linked to immune dysregulation, chronic inflammation, and epithelial barrier dysfunction, all of which contribute to ocular pathology. This review synthesises current evidence on these associations, exploring how gut microbiome alterations drive disease mechanisms. Furthermore, it examines the therapeutic potential of microbiome-targeted interventions, including antibiotics, prebiotics, probiotics, and faecal microbiota transplantation, all of which aim to restore microbial balance and modulate immune responses. As the prevalence of these conditions continues to rise, a deeper understanding of the gut-eye axis may facilitate the development of novel, targeted therapies to address unmet needs in the management of ocular diseases.
Collapse
Affiliation(s)
- Shannan Berzack
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Lei S, Liu Y. Identifying the Involvement of Gut Microbiota in Retinal Vein Occlusion by Mendelian Randomization and Genetic Correlation Analysis. Transl Vis Sci Technol 2025; 14:5. [PMID: 39786739 PMCID: PMC11725986 DOI: 10.1167/tvst.14.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO). Methods This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis. Genome-wide association study (GWAS) data associated with 196 GM taxa was obtained from the MiBioGen consortium, involving a large number of European-ancestry participants. GWAS data of RVO was obtained from the FinnGen consortium and another study that also involved European-ancestry participants. Inverse-variance weighted was used as the primary approach for MR estimation. Moreover, LDSC and polygenic overlap analyses were performed to evaluate the genetic correlation between GM taxa and RVO. Results The MR results identified the association of six GM taxa, including class Bacilli, order Lactobacillales, family Streptococcaceae, genus Clostridium innocuum group, genus Family XIII AD3011 group, and genus Subdoligranulum with the development of RVO. In addition, the polygenic overlap analysis supported the genetic association between GM and RVO. Conclusions Our findings confirmed the association between six GM taxa and the development of RVO, thereby highlighting the effects of GM on retinal vascular health. Translational Relevance The results may provide the rationale for developing GM-based strategies for preventing the onset of RVO.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Larsen PP, Féart C, Pais de Barros JP, Gayraud L, Delyfer MN, Korobelnik JF, Schweitzer C, Delcourt C. Association of Lipopolysaccharide-Type Endotoxins with Retinal Neurodegeneration: The Alienor Study. OPHTHALMOLOGY SCIENCE 2025; 5:100610. [PMID: 39386054 PMCID: PMC11462263 DOI: 10.1016/j.xops.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024]
Abstract
Purpose Lipopolysaccharide (LPS)-type endotoxins are naturally found in the gut microbiota and there is emerging evidence linking gut microbiota and neuroinflammation leading to retinal neurodegeneration. Thinning of the retinal nerve fiber layer (RNFL) is a biomarker of retinal neurodegeneration, and a hallmark of glaucoma, the second leading cause of blindness worldwide. We assessed the association of a blood biomarker of LPS with peripapillary RNFL thickness (RNFLT) and its longitudinal evolution up to 11 years. Design The Alienor study is a single center prospective population-based cohort study. Subjects The studied sample of this study includes 1062 eyes of 548 participants receiving ≥1 gradable RNFL measurement. Methods Plasma esterified 3-hydroxy fatty acids (3-OH FAs) were measured as a proxy of LPS burden. Retinal nerve fiber layer thickness was acquired using spectral-domain OCT imaging every 2 years from 2009 to 2020 (up to 5 visits). Main Outcome Measures Associations of plasma esterified 3-OH FAs with RNFLT were assessed using linear mixed models. Results Mean age of the included 548 participants was 82.4 ± 4.3 years and 62.6% were women. Higher plasma esterified 3-OH FAs was significantly associated with thinner RNFLT at baseline (coefficient beta = -1.42 microns for 1 standard deviation-increase in 3-OH FAs, 95% confidence interval [-2.56; -0.28], P = 0.02). This association remained stable after multivariate adjustment for potential confounders. No statistically significant association was found between 3-OH FAs and longitudinal RNFLT change. Conclusions Higher plasma esterified 3-OH FAs were associated with thinner RNFLT at baseline, indicating an involvement of LPS in the early processes of optic nerve neurodegeneration and highlighting the potential importance of the human microbiota in preserving retinal health. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Petra P. Larsen
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Catherine Féart
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | | | - Laure Gayraud
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Marie-Noëlle Delyfer
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
- CHU de Bordeaux, Service d’Ophtalmologie, F-33000, Bordeaux, France
| | - Jean-François Korobelnik
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
- CHU de Bordeaux, Service d’Ophtalmologie, F-33000, Bordeaux, France
| | - Cédric Schweitzer
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
- CHU de Bordeaux, Service d’Ophtalmologie, F-33000, Bordeaux, France
| | - Cécile Delcourt
- University of Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Kooner KS, Choo DM, Mekala P. Meeting Challenges in the Diagnosis and Treatment of Glaucoma. Bioengineering (Basel) 2024; 12:6. [PMID: 39851280 PMCID: PMC11761580 DOI: 10.3390/bioengineering12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Glaucoma, a progressive and multifactorial optic neurodegenerative disease, still poses significant challenges in both diagnosis and management and remains a perpetual enigma [...].
Collapse
Affiliation(s)
- Karanjit S. Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (D.M.C.); (P.M.)
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| | - Dominic M. Choo
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (D.M.C.); (P.M.)
| | - Priya Mekala
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (D.M.C.); (P.M.)
| |
Collapse
|
7
|
Xie X, Ren W, Zhou W, Zhang X, Deng X, Wang X, Wu Y, Lu Q. Genetic prediction of the effect of gut microbiota on uveitis via blood metabolites: A mediated Mendelian randomization investigation. Medicine (Baltimore) 2024; 103:e40922. [PMID: 39686482 PMCID: PMC11651470 DOI: 10.1097/md.0000000000040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota (GM) may be associated with uveitis. However, the causal relationship between the GM and uveitis and whether blood metabolites act as mediators of the GM remain unclear. We extracted the GM, blood metabolites, and uveitis data from genome-wide association study (GWAS) summary data. We used Mendelian randomization (MR) to investigate the causal relationships among GM, blood metabolites, and uveitis. The primary statistical method used was the inverse variance weighted (IVW) method. In addition, we used 2-sample MR, bidirectional MR, 2-step method and multiple MR to explore whether blood metabolites were mediators of the association between the GM and uveitis. After removing confounding factors, the abundances of the order Bacillales and the genus Holdemanella are risk factors for uveitis, and the abundances of Peptococcus and Ruminococcaceae UCG010 are protective factors. The inverse analysis revealed that uveitis affected 6 GM taxa - 4 positively and 2 negatively. In addition, N-methyl proline and 2-hydroxy sebacate were identified as risk factors for uveitis, and N-formy1 phenylalanine, 1-ribosyl-imidazole acetate, 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) and alpha-ketoglutarate/pyruvate were identified as protective factors for uveitis. Finally, there was a causal association between 3 GM taxa and 6 blood metabolites, with 6 positive and 2 negative effects. N-methylproline possessed the greatest mediated effect (9.41%) between Ruminococcaceae UCG010 and uveitis. These results provide new insights into the pathogenesis of uveitis and offer a new approach to uveitis prevention and treatment from GM and blood metabolites perspective.
Collapse
Affiliation(s)
- Xiaodong Xie
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weina Ren
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weiping Zhou
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xixi Zhang
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Deng
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Wang
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yufei Wu
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinkang Lu
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Ebrahimi R, Farsi Y, Nejadghaderi SA. Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100314. [PMID: 39726974 PMCID: PMC11670420 DOI: 10.1016/j.crmicr.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants. Fecal microbiota transplantation (FMT) is an almost effective and safe treatment option for recurrent Clostridium difficile infection. The relationship between bacterial populations, metabolites, and inflammatory pathways in retinal diseases indicates possible therapeutic strategies. Thus, incorporating host microbiota-based therapies could offer an additional treatment option for glaucoma patients. Here, we propose that combining FMT with standard glaucoma treatments may benefit those affected by this condition. Also, the potential safety, efficacy, cost-effectiveness and clinical applications are discussed.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Sze YH, Tse DYY, Zuo B, Li KK, Zhao Q, Jiang X, Kurihara T, Tsubota K, Lam TC. Deep Spectral Library of Mice Retina for Myopia Research: Proteomics Dataset generated by SWATH and DIA-NN. Sci Data 2024; 11:1115. [PMID: 39389962 PMCID: PMC11467338 DOI: 10.1038/s41597-024-03958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
The retina plays a crucial role in processing and decoding visual information, both in normal development and during myopia progression. Recent advancements have introduced a library-independent approach for data-independent acquisition (DIA) analyses. This study demonstrates deep proteome identification and quantification in individual mice retinas during myopia development, with an average of 6,263 ± 86 unique protein groups. We anticipate that the use of a predicted retinal-specific spectral library combined with the robust quantification achieved within this dataset will contribute to a better understanding of the proteome complexity. Furthermore, a comprehensive mice retinal-specific spectral library was generated, encompassing a total identification of 9,401 protein groups, 70,041 peptides, 95,339 precursors, and 761,868 transitions acquired using SWATH-MS acquisition on a ZenoTOF 7600 mass spectrometer. This dataset surpasses the spectral library generated through high-pH reversed-phase fractionation by data-dependent acquisition (DDA). The data is available via ProteomeXchange with the identifier PXD046983. It will also serve as an indispensable reference for investigations in myopia research and other retinal or neurological diseases.
Collapse
Affiliation(s)
- Ying Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
| | - Dennis Yan Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xiaoyan Jiang
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Thomas Cheun Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518052, China.
| |
Collapse
|
10
|
Cheng Y, Chen X, Zhu G, Li N, Sun Y, Luo S, Liu Y, Lu X. Erigeron breviscapus: A Promising Medication for Protecting the Optic Nerve in Glaucoma. PLANTA MEDICA 2024; 90:992-1004. [PMID: 39303747 DOI: 10.1055/a-2409-2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glaucoma is a common eye condition characterized by the loss of retinal ganglion cells and their axons, optic nerve damage, and visual field defects, which seriously affect a patient's quality of life. The pathogenesis of glaucoma is still unclear at present. It presents as damage to retinal ganglion cells, and the main treatment is primarily to reduce intraocular pressure by surgery or taking medication. However, even with well-controlled intraocular pressure, retinal ganglion cells still undergo degeneration, progressive apoptosis, and axonal loss. Therefore, protecting the optic nerve and inhibiting the apoptosis of retinal ganglion cells are the current hot topic for prevention and treatment of glaucoma. Recently, Erigeron breviscapus, originating from Yunnan province in China, has been shown to be a promising herb with neuroprotective effects to treat glaucoma. Therefore, the traditional usage, botanical characteristics, and phytochemical composition of E. breviscapus were explored through a literature review. Furthermore, we have summarized the pharmacological mechanisms of E. breviscapus and its active components in inhibiting the apoptosis of retinal ganglion cells. These research findings can not only provide guidance and recommendations for the protection of retinal ganglion cells but also further explore the potential of E. breviscapus in the treatment of glaucoma.
Collapse
Affiliation(s)
- Yuxin Cheng
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuanyi Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyu Zhu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Sun
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Shichun Luo
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Yujie Liu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuejing Lu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Gagliano C, Salvetat ML, Musa M, D'Esposito F, Rusciano D, Maniaci A, Pellegrini F, Scibilia G, Zeppieri M. Bacterial Insights: Unraveling the Ocular Microbiome in Glaucoma Pathogenesis. FRONT BIOSCI-LANDMRK 2024; 29:310. [PMID: 39206909 DOI: 10.31083/j.fbl2908310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
This review explores the connection between the ocular surface microbiome and glaucoma, highlighting its impact on disease progression. Beginning with an overview of global glaucoma significance, it emphasizes the importance of understanding the cellular characteristics and microbiology of the ocular microbiome. A search was conducted on the PubMed and Cochrane Library databases using the phrase "ocular microbiome glaucoma". 0 records were returned from the Cochrane Library while 21 were returned from PubMed. A total of 21 results were retrieved from 2017 to 2024. This comprised one opinion paper, four original research articles, and 16 reviews. This review covered the anatomy of the ocular surface, advanced analysis methods, and the ocular microbiome. It also delved into dysbiosis in glaucoma, addressing altered microbial communities and their potential role in disease progression. The intricate interplay between the ocular microbiome and the host's immune system is explored, emphasizing crosstalk and inflammatory responses. The review concludes by discussing therapeutic implications, including modulating ocular microbiota and potential future treatment strategies. Understanding the microbiome in healthy and glaucomatous eyes can help researchers and clinicians in innovative approaches to ocular health.
Collapse
Affiliation(s)
- Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, 95121 Catania, Italy
| | - Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, 300238 Benin, Edo, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, NW15QH London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Napoli, Italy
| | | | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Giuseppe Scibilia
- Department of Obstetrics and Gynecology, "Giovanni Paolo II" Hospital, 97100 Ragusa, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
12
|
Yang Z, Tian D, Zhao X, Luo Y, Chen Y. The gut-retina axis: Uncovering the role of autoimmunity in glaucoma development. Heliyon 2024; 10:e35516. [PMID: 39170439 PMCID: PMC11336731 DOI: 10.1016/j.heliyon.2024.e35516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by progressive loss of retinal ganglion cells (RGCs) and optic nerve damage. While elevated intraocular pressure (IOP) is the only known modifiable risk factor, normal-tension glaucoma (NTG) challenges this notion, suggesting other mechanisms beyond IOP may contribute to its development. Emerging evidence support the hypothesis that glaucoma may be an autoimmune disease. This review summarizes evidence for this hypothesis, focusing on the gut-retina axis. We discuss how antigens of gut bacterial prime peripheral T cells to breach the blood-retina barrier (BRB) and initiate cross-reactivity with ocular tissues via molecular mimicry, resulting in autoimmune RGC damage. Understanding these mechanisms may uncover new diagnostic biomarkers and therapeutic strategies targeting immune pathways alongside conventional IOP-lowering treatments.
Collapse
Affiliation(s)
- Zuyi Yang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianzhe Tian
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
13
|
Wu Y, Fan H, Feng Y, Yang J, Cen X, Li W. Unveiling the gut microbiota and metabolite profiles in guinea pigs with form deprivation myopia through 16S rRNA gene sequencing and untargeted metabolomics. Heliyon 2024; 10:e30491. [PMID: 38756593 PMCID: PMC11096930 DOI: 10.1016/j.heliyon.2024.e30491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Aim The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites. Method 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs. Result Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05). Conclusion The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.
Collapse
Affiliation(s)
- Yajun Wu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Hua Fan
- Shanxi Aier Eye Hospital, Taiyuan, Shanxi, 030000, China
| | - Yuliang Feng
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Jiasong Yang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Xiaobo Cen
- WestChina-Frontier PharmaTech Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Wensheng Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| |
Collapse
|
14
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
15
|
Jang HJ, Lee NK, Paik HD. A Narrative Review on the Advance of Probiotics to Metabiotics. J Microbiol Biotechnol 2024; 34:487-494. [PMID: 38247208 PMCID: PMC11018519 DOI: 10.4014/jmb.2311.11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
Huang L, Hong Y, Fu X, Tan H, Chen Y, Wang Y, Chen D. The role of the microbiota in glaucoma. Mol Aspects Med 2023; 94:101221. [PMID: 37866106 DOI: 10.1016/j.mam.2023.101221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Glaucoma is a common irreversible vision loss disorder because of the gradual loss of retinal ganglion cells (RGCs) and the optic nerve axons. Major risk factors include elder age and high intraocular pressure (IOP). However, high IOP is neither necessary nor sufficient to cause glaucoma. Some non-IOP signaling cascades can mediate RGC degeneration. In addition, gender, diet, obesity, depression, or anxiety also contribute to the development of glaucoma. Understanding the mechanism of glaucoma development is crucial for timely diagnosis and establishing new strategies to improve current IOP-reducing therapies. The microbiota exerts a marked influence on the human body during homeostasis and disease. Many glaucoma patients have abnormal compositions of the microbiota (dysbiosis) in multiple locations, including the ocular surface, intraocular cavity, oral cavity, stomach, and gut. Here, we discuss findings in the last ten years or more about the microbiota and metabolite changes in animal models, patients with three risk factors (aging, obesity, and depression), and glaucoma patients. Antigenic mimicry and heat stress protein (HSP)-specific T-cell infiltration in the retina may be responsible for commensal microbes contributing to glaucomatous RGC damage. LPS-TLR4 pathway may be the primary mechanism of oral and ocular surface dysbiosis affecting glaucoma. Microbe-derived metabolites may also affect glaucoma pathogenesis. Homocysteine accumulation, inflammatory factor release, and direct dissemination may link gastric H. pylori infection and anterior chamber viral infection (such as cytomegalovirus) to glaucoma. Potential therapeutic protocols targeting microbiota include antibiotics, modified diet, and stool transplant. Later investigations will uncover the underlying molecular mechanism connecting dysbiosis to glaucoma and its clinical applications in glaucoma management.
Collapse
Affiliation(s)
- Ling Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Hong
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Fu
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haishan Tan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Yujiao Wang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Danian Chen
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Luo W, Skondra D. Elucidating the Role of the Microbiome in Ocular Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1622-1626. [PMID: 37683929 DOI: 10.1016/j.ajpath.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|