1
|
Macht V, de Castro S, Vetreno RP. Impact of Neuroimmune System Activation by Adolescent Binge Alcohol Exposure on Adult Neurobiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:179-208. [PMID: 40128480 DOI: 10.1007/978-3-031-81908-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Adolescence is a conserved neurodevelopmental period encompassing maturation of glia and the innate immune system that parallels refinement of brain structures, neurotransmitter systems, and neurocircuitry. Given the vast neurodevelopmental processes occurring during adolescence, spanning brain structural and neurocircuitry refinement to maturation of neurotransmitter systems, glia, and the innate immune system, insults incurred during this critical period of neurodevelopment, could have profound effects on brain function and behavior that persist into adulthood. Adolescent binge drinking is common and associated with many adverse outcomes that may underlie the lifelong increased risk of alcohol-related problems and development of an alcohol use disorder (AUD). In this chapter, we examined the impact of adolescent binge drinking models using the adolescent intermittent ethanol (AIE) model on adult neurobiology. These studies implicate proinflammatory neuroimmune signaling across glia and neurons in persistent AIE-induced neuropathology. Some of these changes are reversible, providing unique opportunities for the development of treatments to prevent many of the long-term consequences of adolescent alcohol misuse.
Collapse
Affiliation(s)
- Victoria Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sagan de Castro
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Reséndiz-Flores M, Miranda MI. Sugar consumption induces the consummatory suppression of sugary ethanol: Differential effects of sugar restriction according to sex and age. Drug Alcohol Depend 2024; 260:111322. [PMID: 38728924 DOI: 10.1016/j.drugalcdep.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Sweet foods activate the reward system that is essential in processing natural reinforcers. Maturation changes in this system during adolescence are linked to heightened impulsivity and risk-seeking behavior, including the use of drugs like ethanol. This usually starts with the consumption of sugary mixtures. However, the influence of sugar exposure on ethanol consumption remains inconclusive. The present research examines the effect of long-term sugar exposure on sugary ethanol (S-EtOH) preference and net intake, exploring the implications of sex, age, accessor restriction of sugar, and its effect during the transition into adulthood. Wistar rats of both sexes were given 24-hour access to a sugar solution for 21 days during adolescence or adulthood. Subsequently, four preference tests of S-EtOH vs. water were carried out every other day, with or without sugar access between each preference test. Our results demonstrate that continuous acute and long-term sugar access induces a consummatory suppression effect on S-EtOH intake, particularly in adult rats, irrespective of sex. This effect becomes more pronounced with more extended periods of exposure to sugar, leading to a higher prevalence of low consumers. Notably, when sugar access was restricted after high familiarization, the suppression effect in adolescent male rats was reduced. Under these conditions, the rats appeared to be more susceptible to developing a preference for S-EtOH consumption. Furthermore, our longitudinal observations reveal that sugar access or restriction conditions during the transition from adolescence to adulthood play a crucial role in shaping S-EtOH consumption patterns in adulthood.
Collapse
Affiliation(s)
- Maricruz Reséndiz-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, No. 3001, Querétaro, Querétaro 76230, Mexico
| | - María-Isabel Miranda
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, No. 3001, Querétaro, Querétaro 76230, Mexico.
| |
Collapse
|
3
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
4
|
Hauser SR, Waeiss RA, Deehan GA, Engleman EA, Bell RL, Rodd ZA. Adolescent alcohol and nicotine exposure alters the adult response to alcohol use. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11880. [PMID: 38389816 PMCID: PMC10880795 DOI: 10.3389/adar.2023.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 02/24/2024]
Abstract
Adolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Chandler CM, Shaykin JD, Peng H, Pauly JR, Nixon K, Bardo MT. Effects of voluntary adolescent intermittent alcohol exposure and social isolation on adult alcohol intake in male rats. Alcohol 2022; 104:13-21. [PMID: 35981637 PMCID: PMC10806401 DOI: 10.1016/j.alcohol.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 01/26/2023]
Abstract
Initiating alcohol use in adolescence significantly increases the likelihood of developing adult alcohol use disorder (AUD). However, it has been difficult to replicate adolescent alcohol exposure leading to increased adult alcohol intake across differing preclinical models. In the present study, differentially housed male rats (group vs. single cages) were used to determine the effects of voluntary intermittent exposure of saccharin-sweetened ethanol during adolescence on adult intake of unsweetened 20% ethanol. Adolescent male rats were assigned to group- or isolated-housing conditions and underwent an intermittent 2-bottle choice in adolescence (water only or water vs. 0.2% saccharin/20% ethanol), and again in adulthood (water vs. 20% ethanol). Intermittent 2-bottle choice sessions lasted for 24 h, and occurred three days per week, for five weeks. Rats were moved from group or isolated housing to single-housing cages for 2-bottle choice tests and returned to their original housing condition on off days. During adolescence, rats raised in isolated-housing conditions consumed significantly more sweetened ethanol than rats raised in group-housing conditions, an effect that was enhanced across repeated exposures. In adulthood, rats raised in isolated-housing conditions and exposed to sweetened ethanol during adolescence also consumed significantly higher levels of unsweetened 20% ethanol compared to group-housed rats. The effect was most pronounced over the first five re-exposure sessions. Housing conditions alone had little effect on adult ethanol intake. These preclinical results suggest that social isolation stress, combined with adolescent ethanol exposure, may play a key role in adult AUD risk.
Collapse
Affiliation(s)
- Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
8
|
Williams KL, Parikh UK, Doyle SM, Meyer LN. Effect of intermittent access to alcohol mixed in energy drink during adolescence on alcohol self-administration, anxiety, and memory during adulthood in rats. Alcohol Clin Exp Res 2022; 46:1423-1432. [PMID: 35778776 DOI: 10.1111/acer.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mixing alcohol with caffeinated energy drinks is a common practice among young people. Consumption of alcohol mixed in energy drink is associated with increased risk of binge drinking and alcohol dependence. The purpose of this study was to determine whether voluntary intermittent access to alcohol mixed in energy drink in adolescent rats alters adult self-administration of alcohol, anxiety, and memory. METHODS For 10 weeks in the home-cage, two groups of adolescent female Sprague-Dawley rats had intermittent access to energy drink (ED) or 10% alcohol mixed in energy drink (AmED) with water concurrently available. Other rat groups had daily continuous access to ED or AmED. Anxiety was measured with an open field test and memory was assessed with a novel place recognition test. For self-administration, rats pressed levers for 10% alcohol alone on a fixed ratio (FR1) and on a progressive ratio (PR). RESULTS Intermittent access to AmED generated greater intake during the initial 30 min of access (AmED 1.70 ± 0.04 g/kg vs. ED 1.01 ± 0.06 g/kg) and during the subsequent 24 h (AmED 7.04 ± 0.25 g/kg vs. ED 5.60 ± 0.29 g/kg). Intermittent AmED caused a significant but small decrease in anxiety while neither ED nor AmED altered memory. During alcohol self-administration, group differences emerged only during PR testing during which intermittent AmED rats responded more than all other groups. CONCLUSIONS These findings suggest that intermittent access to AmED generates binge-like consumption that supports human findings that AmED generates greater alcohol consumption. Furthermore, experience with AmED may alter the motivational properties of alcohol into adulthood without necessarily causing a major impact on anxiety or memory.
Collapse
Affiliation(s)
- Keith L Williams
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Urja K Parikh
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Shannon M Doyle
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Lindsey N Meyer
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
9
|
Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 2022; 12:brainsci12050606. [PMID: 35624993 PMCID: PMC9139058 DOI: 10.3390/brainsci12050606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.
Collapse
|
10
|
Hauser SR, Mulholland PJ, Truitt WA, Waeiss RA, Engleman EA, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. Int J Mol Sci 2021; 22:11733. [PMID: 34769161 PMCID: PMC8584082 DOI: 10.3390/ijms222111733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
Collapse
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Patrick J. Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - William A. Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - R. Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Eric A. Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.H.); (W.A.T.); (R.A.W.); (E.A.E.); (R.L.B.)
| |
Collapse
|
11
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
12
|
Rodd ZA, Hauser SR, Swartzwelder HS, Waeiss RA, Lahiri DK, Bell RL. Regulation of the deleterious effects of binge-like exposure to alcohol during adolescence by α7 nicotinic acetylcholine receptor agents: prevention by pretreatment with a α7 negative allosteric modulator and emulation by a α7 agonist in alcohol-preferring (P) male and female rats. Psychopharmacology (Berl) 2020; 237:2601-2611. [PMID: 32607619 PMCID: PMC7502519 DOI: 10.1007/s00213-020-05557-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES Binge-like alcohol consumption during adolescence associates with several deleterious consequences during adulthood including an increased risk for developing alcohol use disorder (AUD) and other addictions. Replicated preclinical data has indicated that adolescent exposure to binge-like levels of alcohol results in a reduction of choline acetyltransferase (ChAT) and an upregulation in the α7 nicotinic receptor (α7). From this information, we hypothesized that the α7 plays a critical role in mediating the effects of adolescent alcohol exposure. METHODS Male and female P rats were injected with the α7 agonist AR-R17779 (AR) once during 6 time points between post-natal days (PND) 29-37. Separate groups were injected with the α7 negative allosteric modulator (NAM) dehydronorketamine (DHNK) 2 h before administration of 4 g/kg EtOH (14 total exposures) during PND 28-48. On PND 75, all rats were given access to water and ethanol (15 and 30%) for 6 consecutive weeks (acquisition). All rats were then deprived of EtOH for 2 weeks and then, alcohol was returned (relapse). RESULTS Administration of AR during adolescence significantly increased acquisition of alcohol consumption during adulthood and prolonged relapse drinking in P rats. In contrast, administration of DHNK prior to binge-like EtOH exposure during adolescence prevented the increase in alcohol consumption observed during acquisition of alcohol consumption and the enhancement of relapse drinking observed during adulthood. DISCUSSION The data indicate that α7 mediates the effects of alcohol during adolescence. The data also indicate that α7 NAMs are potential prophylactic agents to reduce the deleterious effects of adolescent alcohol abuse.
Collapse
Affiliation(s)
- Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Scott Swartzwelder
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 W. 15th Street, Suite 300B, Indianapolis, IN, 46202-2266, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Towner TT, Varlinskaya EI. Adolescent Ethanol Exposure: Anxiety-Like Behavioral Alterations, Ethanol Intake, and Sensitivity. Front Behav Neurosci 2020; 14:45. [PMID: 32296315 PMCID: PMC7136472 DOI: 10.3389/fnbeh.2020.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a developmental period associated with rapid age-specific physiological, neural, and hormonal changes. Behaviorally, human adolescents are characterized by age-typical increases in novelty-seeking and risk-taking, including the frequent initiation of alcohol and drug use. Alcohol use typically begins during early adolescence, and older adolescents often report high levels of alcohol consumption, commonly referred to as high-intensity drinking. Early-onset and heavy drinking during adolescence are associated with an increased risk of developing alcohol use disorders later in life. Yet, long-term behavioral consequences of adolescent alcohol use that might contribute to excessive drinking in adulthood are still not well understood. Recent animal research, however, using different exposure regimens and routes of ethanol administration, has made substantial progress in identifying the consequences of adolescent ethanol exposure that last into adulthood. Alterations associated with adolescent ethanol exposure include increases in anxiety-like behavior, impulsivity, risk-taking, and ethanol intake, although the observed alterations differ as a function of exposure regimens and routes of ethanol administration. Rodent studies have also shown that adolescent ethanol exposure produces alterations in sensitivity to ethanol, with these alterations reminiscent of adolescent-typical ethanol responsiveness. The goal of this mini-review article is to summarize the current state of animal research, focusing on the long-term consequences related to adolescent ethanol exposure, with a special emphasis on the behavioral alterations and changes to ethanol sensitivity that can foster high levels of drinking in adulthood.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
14
|
Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure. Alcohol 2020; 82:11-21. [PMID: 31233806 PMCID: PMC6925350 DOI: 10.1016/j.alcohol.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.
Collapse
|
15
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Operant, oral alcohol self-administration: Sex differences in Sardinian alcohol-preferring rats. Alcohol 2019; 79:147-162. [PMID: 31029630 DOI: 10.1016/j.alcohol.2019.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Sardinian alcohol-preferring (sP) rats have been selectively bred, over almost 40 years, for high alcohol preference and consumption. sP rats have served as an animal model for more than 120 published studies. With very few exceptions, however, these studies have always employed male sP rats, and little is known about alcohol-related behaviors in female sP rats. The present study was designed to fill, at least in part, this gap. Accordingly, alcohol self-administration under the fixed ratio 4 schedule of reinforcement was compared among male, intact female, and ovariectomized female sP rats. Additionally, it was investigated whether i) estrous cycle influenced alcohol self-administration, and ii) alcohol self-administration in the three sP rat groups differed in sensitivity to pharmacological manipulation. Lever-responding for alcohol was steadily higher in male than intact and ovariectomized female sP rats; conversely, because of large sex differences in rat body weight, estimated amount of self-administered alcohol (in g/kg) did not differ among the three sP rat groups or occasionally was higher in intact female than male and ovariectomized female sP rats. Blood alcohol levels derived from self-administered alcohol i) did not differ among the three sP rat groups and ii) were positively correlated with the number of lever-responses for alcohol and the estimated amount of self-administered alcohol. Treatment with the opioid receptor antagonist, naloxone (0, 0.3, 1, and 3 mg/kg, i.p. [intraperitoneally]), and the positive allosteric modulator of the GABAB receptor, GS39783 (0, 25, 50, and 100 mg/kg, i.g. [intragastrically]), reduced alcohol self-administration with comparable potency and efficacy in the three sP rat groups. The impact of the estrous cycle on alcohol self-administration was relatively modest, limited to a tendency toward a reduction in the number of lever-responses for alcohol and the estimated amount of self-administered alcohol in estrus and metestrus. Together, these results provide the first characterization of alcohol-seeking and -taking behavior in female sP rats.
Collapse
|
17
|
Waeiss RA, Knight CP, Carvajal GB, Bell RL, Engleman EA, McBride WJ, Hauser SR, Rodd ZA. Peri-adolescent alcohol consumption increases sensitivity and dopaminergic response to nicotine during adulthood in female alcohol-preferring (P) rats: Alterations to α7 nicotinic acetylcholine receptor expression. Behav Brain Res 2019; 376:112190. [PMID: 31473285 DOI: 10.1016/j.bbr.2019.112190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Adolescent alcohol drinking has been linked to increased risk for drug abuse during adulthood. Nicotine microinjected directly into the posterior ventral tegmental area (pVTA) stimulates dopamine (DA) release in the nucleus accumbens (NAc) shell. The α7 nicotinic acetylcholine receptor (nAChR) is a potent regulator of dopaminergic activity in the pVTA. The current experiments examined the effects of peri-adolescent ethanol (EtOH) drinking on the ability of intra-pVTA nicotine to stimulate DA release during adulthood and alterations in α7 nAChR expression within the pVTA. Alcohol-preferring (P) female rats consumed EtOH and/or water during adolescence (post-natal day [PND] 30-60) or adulthood (PND 90-120). Thirty days following removal of EtOH, subjects received microinjections of 1 μM, 10 μM, or 50 μM nicotine into the pVTA concurrently with microdialysis for extracellular DA in the NAc shell. Brains were harvested from an additional cohort after PND 90 for quantification of α7 nAChR within the pVTA. The results indicated that only adolescent EtOH consumption produced a leftward and upward shift in the dose response curve for nicotine to stimulate DA release in the NAc shell. Investigation of α7 nAChR expression within the pVTA revealed a significant increase in animals that consumed EtOH during adolescence compared to naïve animals. The data suggests that peri-adolescent EtOH consumption produced cross-sensitization to the effects of nicotine during adulthood. The interaction between adolescent EtOH consumption and inflated adult risk for drug dependency could be predicated, at least in part, upon alterations in α7 nAChR expression within the mesolimbic reward pathway.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Gustavo B Carvajal
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| |
Collapse
|
18
|
Hauser SR, Knight CP, Truitt WA, Waeiss RA, Holt IS, Carvajal GB, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area. Alcohol Clin Exp Res 2019; 43:1937-1948. [DOI: 10.1111/acer.14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | | | - William A. Truitt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Robert Aaron Waeiss
- Program in Medical Neuroscience Paul and Carole Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana
| | - Ian S. Holt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Gustavo B. Carvajal
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Richard L. Bell
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Zachary A. Rodd
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| |
Collapse
|
19
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Madayag AC, Stringfield SJ, Reissner KJ, Boettiger CA, Robinson DL. Sex and Adolescent Ethanol Exposure Influence Pavlovian Conditioned Approach. Alcohol Clin Exp Res 2017; 41:846-856. [PMID: 28196273 DOI: 10.1111/acer.13354] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol use among adolescents is widespread and a growing concern due to long-term behavioral deficits, including altered Pavlovian behavior, that potentially contribute to addiction vulnerability. We tested the hypothesis that adolescent intermittent ethanol (AIE) exposure alters Pavlovian behavior in males and females as measured by a shift from goal-tracking to sign-tracking. Additionally, we investigated GLT-1, an astrocytic glutamate transporter, as a potential contributor to a sign-tracking phenotype. METHODS Male and female Sprague-Dawley rats were exposed to AIE (5 g/kg, intragastric) or water intermittently 2 days on and 2 days off from postnatal day (P) 25 to 54. Around P70, animals began 20 daily sessions of Pavlovian conditioned approach (PCA), where they learned that a cue predicted noncontingent reward delivery. Lever pressing indicated interaction with the cue, or sign-tracking, and receptacle entries indicated approach to the reward delivery location, or goal-tracking. To test for effects of AIE on nucleus accumbens (NAcc) excitatory signaling, we isolated membrane subfractions and measured protein levels of the glutamate transporter GLT-1 after animals completed behavior as a measure of glutamate homeostasis. RESULTS Females exhibited elevated sign-tracking compared to males with significantly more lever presses, faster latency to first lever press, and greater probability to lever press in a trial. AIE significantly increased lever pressing while blunting goal-tracking, as indicated by fewer cue-evoked receptacle entries, slower latency to receptacle entry, and lower probability to enter the receptacle in a trial. No significant sex-by-exposure interactions were observed in sign- or goal-tracking metrics. Moreover, we found no significant effects of sex or exposure on membrane GLT-1 expression in the NAcc. CONCLUSIONS Females exhibited enhanced sign-tracking compared to males, while AIE decreased goal-tracking compared to control exposure. Our findings support the hypothesis that adolescent binge ethanol can shift conditioned behavior from goal- to cue-directed in PCA, especially in females.
Collapse
Affiliation(s)
- Aric C Madayag
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Kathryn J Reissner
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats. Alcohol 2017; 59:43-51. [PMID: 28187948 DOI: 10.1016/j.alcohol.2016.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
Binge drinking and the onset of alcohol-use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study, we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model, we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day [PD] 26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed-ratio (FR) 16 lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course, beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and faster completion of FR schedules in adulthood, whereas the low consumers were no different from controls. Rats exposed to ethanol in young adulthood also increased future intake, but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent and early adult alcohol exposure can increase consumptive aspects of drinking but that adolescent exposure may preferentially influence the motivation to drink.
Collapse
|