1
|
Michalak A, Guz M, Kozicka J, Cybulski M, Jeleniewicz W, Szczygieł K, Tywanek E, Cichoż-Lach H. microRNAs and Other Serological Markers of Liver Fibrosis in Patients with Alcohol-Related Liver Cirrhosis. Biomedicines 2024; 12:2108. [PMID: 39335621 PMCID: PMC11429221 DOI: 10.3390/biomedicines12092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: It is essential to identify novel non-invasive markers of liver fibrosis for clinical and scientific purposes. Thus, the goal of our survey was to assess the serological expression of selected microRNAs (miRNAs) in patients with alcohol-related liver cirrhosis (ALC) and to correlate them with other existing markers. Methods: Two hundred and thirty-nine persons were enrolled in the study: one hundred and thirty-nine with ALC and one hundred healthy controls. Serological expression of miR-126-3p, miR-197-3p and miR-1-3p was evaluated in all participants. Direct markers of liver fibrosis (PICP, PIIINP, PDGF-AB, TGF-α and laminin) together with indirect indices (AAR, APRI, FIB-4 and GPR) were also assessed. The additional evaluation concerned hematological parameters: MPV, PDW, PCT, RDW, MPR, RPR NLR, PLR and RLR. Results: The expression of miR-197-3p was lower in ALC compared to controls (p < 0.0001). miR-126-3p correlated negatively with AST (p < 0.05) and positively with miR-197-3p (p < 0.001). miR-197-3p correlated with direct markers of liver fibrosis-positively with PDGF-AB (p < 0.005) and negatively with TGF-α (p < 0.01). Significant negative relationships were noticed between miR-1-3p and the number of neutrophils (p < 0.05), TGF-α (p < 0.05) and laminin (p < 0.05). Conclusions: The achieved results and observed correlations prove the potential involvement of the examined miRNAs in the process of liver fibrosis, giving a novel insight into the diagnostics of liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (J.K.); (H.C.-L.)
| | - Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.G.); (M.C.); (W.J.)
| | - Joanna Kozicka
- Department of Gastroenterology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (J.K.); (H.C.-L.)
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.G.); (M.C.); (W.J.)
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (M.G.); (M.C.); (W.J.)
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Ewa Tywanek
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
- Department of Endocrinology with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Halina Cichoż-Lach
- Department of Gastroenterology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (J.K.); (H.C.-L.)
| |
Collapse
|
2
|
Dasgupta T, Manickam V. Benzydamine hydrochloride ameliorates ethanol-induced inflammation in RAW 264.7 macrophages by stabilizing redox homeostasis. Asian Pac J Trop Biomed 2024; 14:73-81. [DOI: 10.4103/apjtb.apjtb_823_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/24/2024] [Indexed: 01/05/2025] Open
Abstract
Objective:
To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.
Methods:
RAW 264.7 macrophages were treated with ethanol (100 mM) and benzydamine hydrochloride (7.5 μM). The inflammatory status was confirmed by measuring pro-(TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines through ELISA and RT-PCR assays. Reactive oxygen species generation and mitochondrial membrane potential were investigated to study the protective role of benzydamine hydrochloride against ethanol-induced oxidative stress. Apoptosis detection was also investigated using flow cytometry and acridine orange/ethidium bromide staining.
Results:
Benzydamine hydrochloride significantly decreased the secretion of TNF-α and IL-6, as well as the generation of reactive oxygen species inside the cells, thereby stabilizing the mitochondrial membrane potential and reducing DNA fragmentation. The ethanol-induced cellular necrosis was also reversed by the administration of benzydamine hydrochloride.
Conclusions:
Benzydamine hydrochloride ameliorates ethanol-induced cell apoptosis and inflammation in RAW macrophages.
Collapse
Affiliation(s)
- Tiasha Dasgupta
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Xie LY, Yang Z, Wang Y, Hu JN, Lu YW, Zhang H, Jiang S, Li W. 1- O-Actylbritannilactone Ameliorates Alcohol-Induced Hepatotoxicity through Regulation of ROS/Akt/NF-κB-Mediated Apoptosis and Inflammation. ACS OMEGA 2022; 7:18122-18130. [PMID: 35664604 PMCID: PMC9161245 DOI: 10.1021/acsomega.2c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/04/2022] [Indexed: 05/20/2023]
Abstract
1-O-Acetylbritannilactone (ABL) is a marker component of Inula britannica L. and is reported to exhibit multiple pharmacological activities, including antiaging, anti-inflammatory, and antidiabetic properties. Although the protective effect of Inula britannica L. on animal models of liver injury has been widely reported, the effect of ABL on alcohol-induced liver damage has not been confirmed. The present study was designed to investigate the protective effect of ABL against alcohol-induced LO2 human normal liver cell injury and to further clarify the underlying mechanism. Our results revealed that ABL at concentrations of 0.5, 1, and 2 μM could remarkably suppress the decreased viability of LO2 cells stimulated by alcohol. In addition, ABL pretreatment improved alcohol-induced oxidative damage by decreasing the level of reactive oxygen species (ROS) and the excessive consumption of glutathione peroxidase (GSH-Px), while increasing the level of catalase (CAT) in LO2 cells. Moreover, Western blotting analysis showed that ABL pretreatment activated protein kinase B (Akt) phosphorylation, increased downstream antiapoptotic protein Bcl-2 expression, and decreased the phosphorylation level of the caspase family including caspase 9 and caspase 3 proteins, thereby attenuating LO2 cell apoptosis. Importantly, we also found that ABL significantly inhibits the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the secretion of proinflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL-1β). In conclusion, the current research clearly suggests that the protective effect of ABL on alcohol-induced hepatotoxicity may be achieved in part through regulation of the ROS/Akt/NF-κB signaling pathway to inhibit inflammation and apoptosis in LO2 cells. (The article path map has not been seen.).
Collapse
Affiliation(s)
- Li-ya Xie
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zhen Yang
- Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Ying Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jun-nan Hu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Ya-wei Lu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Hao Zhang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| |
Collapse
|
4
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|