1
|
The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 2021; 31:1570-1577.e4. [PMID: 33592192 DOI: 10.1016/j.cub.2021.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina)1 are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants.2,3 AMS allows plants to efficiently acquire poorly soluble soil nutrients4 and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years5 and is thought to be one of the key innovations that allowed the colonization of lands by plants.6 Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS.7,8 However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.9Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state.10-12 Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.
Collapse
|
2
|
Fuad Hossain M, Ratnayake R, Mahbub S, Kumara KW, Magana-Arachchi D. Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi J Biol Sci 2020; 27:1514-1520. [PMID: 32489288 PMCID: PMC7253897 DOI: 10.1016/j.sjbs.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Abstract
The present study was carried out to investigate cyanobacteria as a potential source for biodiesel production isolated from fresh water bodies of Sri Lanka. Semi mass culturing and mass culturing were carried out to obtain biomass for extracting total lipids. Fatty acid methyl ester (FAME) or biodiesel was produced from extracted lipid by trans-esterification reaction. FAME component was identified using gas chromatography (GC). Atotal of 74 uni-algal cultures were obtained from Biofuel and Bioenergy laboratory of the National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka. The total lipid content was recorded highest in Oscillatoria sp. (31.9 ± 2.01% of dry biomass) followed by Synechococcus sp. (30.6 ± 2.87%), Croococcidiopsis sp. (22.7 ± 1.36%), Leptolyngbya sp. (21.15 ± 1.99%), Limnothrixsp. (20.73 ± 3.26%), Calothrix sp. (18.15 ± 4.11%) and Nostoc sp. (15.43 ± 3.89%), Cephalothrixsp. (13.95 ± 4.27%), Cephalothrix Komarekiana (13.8 ± 3.56%) and Westiellopsisprolifica (12.80 ± 1.97%). FAME analysis showed cyanobacteria contain Methyl palmitoleate, Linolelaidic acid methyl ester, Cis-8,11,14-eicosatrienoic acid methyl ester, Cis-10-heptadecanoic acid methyl ester, Methyl myristate, Methyl pentadecanoate, Methyl octanoate, Methyl decanoate, Methyl laurate, Methyl tridecanoate, Methyl palmitoleate, Methyl pentadeconoate, Methyl heptadeconoate, Linolaidic acid methyl ester, Methyl erucate, Methyl myristate, Myristoloeic acid, Methyl palmitate, Cis-9-oleic acid methyl ester, Methyl arachidate and Cis-8,11,14-ecosatrieconoic acid methyl ester. The present study revealed that cyanobacteria isolated from Sri Lanka are potential source for biodiesel industry because of their high fatty acid content. Further studies are required to optimize the mass culture conditions to increase thelipid content from cyanobacterial biomass along with the research in the value addition to the remaining biomass.
Collapse
Affiliation(s)
- Md. Fuad Hossain
- Department of Biochemistry & Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
- National Institute of Fundamental Studies, Kandy, Sri Lanka
- Faculty of Agriculture, University of Ruhuna, Sri Lanka
| | - R.R. Ratnayake
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Shamim Mahbub
- Department of Chemistry & Physics, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | | |
Collapse
|
3
|
Lu Y, Zhuo C, Li Y, Li H, Yang M, Xu D, He H. Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production. BIORESOURCE TECHNOLOGY 2020; 297:122418. [PMID: 31761632 DOI: 10.1016/j.biortech.2019.122418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The study evaluates 36 filamentous heterocystous cyanobacteria for the treatment of biogas slurry from pig farm and the accumulation of biomass for bioenergy production. The results showed that only the strains B, J, and L were able to adapt to a 10% biogas slurry. The removal rates of ammonia nitrogen, total nitrogen, and total phosphorus for strains J and L were 92.46%-97.97%, 73.79%-79.90%, and 97.14%-98.46%, respectively, higher than that of strain B. Strain J had the highest biomass productivity and lipid productivity. Based on the biodiesel prediction results, it was concluded that strains J and L are more suitable for biodiesel production. The estimation of theoretical methane potential suggests that the algal biomass of strain J also have the desirable possibility of biogas generation. In summary, algal strain J (Nostoc sp.) offers great potential for biogas slurry treatment and for the production of bioenergy.
Collapse
Affiliation(s)
- Yuzhen Lu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhuo
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongjun Li
- Qingyuan Polytechnic, Qingyuan 511510, China
| | - Huashou Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengying Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Danni Xu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi He
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Syrpas M, Bukauskaitė J, Paškauskas R, Bašinskienė L, Venskutonis PR. Recovery of lipophilic products from wild cyanobacteria (Aphanizomenon flos-aquae) isolated from the Curonian Lagoon by means of supercritical carbon dioxide extraction. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Trichormus variabilis (Cyanobacteria) Biomass: From the Nutraceutical Products to Novel EPS-Cell/Protein Carrier Systems. Mar Drugs 2018; 16:md16090298. [PMID: 30150548 PMCID: PMC6164293 DOI: 10.3390/md16090298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading to high yields of Released EPS (REPS) and PUFA, useful for nutraceutical products and biomaterials. REPS were extracted and characterized by chemical staining, Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC), Fourier Transform Infrared Spectroscopy (FT-IR) and other spectroscopic techniques. Due to their gelation property, REPS were used to produce a photo-polymerizable hybrid hydrogel (REPS-Hy) with addition of polyethylene glycol diacrylated (PEGDa). REPS-Hy was stable over time and resistant to dehydration and spontaneous hydrolysis. The rheological and functional properties of REPS-Hy were studied. The enzyme carrier ability of REPS-Hy was assessed using the detoxification enzyme thiosulfate:cyanide sulfur transferase (TST), suggesting the possibility to use REPS-Hy as an enzymatic hydrogel system. Finally, REPS-Hy was used as a scaffold for culturing human mesenchymal stem cells (hMSCs). The cell seeding onto the REPS-Hy and the cell embedding into 3D-REPS-Hy demonstrated a scaffolding property of REPS-Hy with non-cytotoxic effect, suggesting potential applications of cyanobacteria REPS for producing enzyme- and cell-carrier systems.
Collapse
|
6
|
Omirou M, Tzovenis I, Charalampous P, Tsaousis P, Polycarpou P, Chantzistrountsiou X, Economou-Amilli A, Ioannides IM. Development of marine multi-algae cultures for biodiesel production. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Bauersachs T, Talbot HM, Sidgwick F, Sivonen K, Schwark L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS One 2017; 12:e0186360. [PMID: 29036222 PMCID: PMC5642901 DOI: 10.1371/journal.pone.0186360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
The recent proliferation of harmful cyanobacterial blooms (cyanoHABs) in the Baltic and other marginal seas poses a severe threat for the health of infested ecosystems as e.g. the massive export and decay of cyanobacterial biomass facilitates the spread of bottom water hypoxia. There is evidence that cyanoHABs occurred repeatedly in the Baltic Sea but knowledge of their spatiotemporal distribution and the cyanobacteria that contributed to them is limited. In this study, we examined representatives of the major bloom-forming heterocystous cyanobacteria (i.e. Aphanizomenon, Dolichospermum (formerly Anabaena) and Nodularia) to establish lipid fingerprints that allow tracking these environmentally important diazotrophs in the modern and past Baltic Sea. The distribution of normal and mid-chain branched alkanes, fatty acid methyl esters, bacteriohopanepolyols and heterocyst glycolipids permitted a clear chemotaxonomic separation of the different heterocystous cyanobacteria but also indicated a close phylogenetic relationship between representatives of the genera Aphanizomenon and Dolichospermum. Compared to the discontinuous nature of phytoplankton surveys studies, the distinct lipid profiles reported here will allow obtaining detailed spatiotemporal information on the frequency and intensity of Baltic Sea cyanoHABs as well as their community composition using the time-integrated biomarker signatures recorded in surface and subsurface sediments. As heterocystous cyanobacteria of the genera Aphanizomenon, Dolichospermum and Nodularia are generally known to form massive blooms in many brackish as well as lacustrine systems worldwide, the chemotaxonomic markers introduced in this study may allow investigating cyanoHABs in a great variety of contemporary environments from polar to tropical latitudes.
Collapse
Affiliation(s)
- Thorsten Bauersachs
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Helen M. Talbot
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Sidgwick
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lorenz Schwark
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
- Department of Chemistry, Curtin University, Perth, Australia
| |
Collapse
|
8
|
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8:515. [PMID: 28487674 PMCID: PMC5403934 DOI: 10.3389/fmicb.2017.00515] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, Institute of Biology, University of BialystokBialystok, Poland
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Govt. Ramanuj Pratap Singhdev Post-Graduate CollegeBaikunthpur, Koriya, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
9
|
Lynch F, Santana-Sánchez A, Jämsä M, Sivonen K, Aro EM, Allahverdiyeva Y. Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|