1
|
Nawahda A. The effect of research on COVID-19 and PM 2.5 on the localization of humanitarian aid. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:763. [PMID: 37249710 PMCID: PMC10227781 DOI: 10.1007/s10661-023-11372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The spatiotemporal variation of the death and tested positive cases is poorly understood during the respiratory coronavirus disease 2019 (COVID-19) pandemic. On the other hand, COVID-19's spread was not significantly slowed by pandemic maps. The aim of this study is to investigate the connection between COVID-19 distribution and airborne PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm). Long-term exposure to high levels of PM2.5 is significantly connected to respiratory diseases in addition to being a potential carrier of viruses. Between April 2020 and March 2021, data on COVID-19-related cases were gathered for all prefectures in Japan. There were 9159, 109,078, and 451,913 cases of COVID-19 that resulted in death, severe illness, and positive tests, respectively. Additionally, we gathered information on PM2.5 from 1119 air quality monitoring stations that were deployed across the 47 prefectures. By using the statistical analysis tools in the Geographical Information System (GIS) software, it was found that the residents of prefectures with high PM2.5 concentrations were the most susceptible to COVID-19. Additionally, the World Health Organization-Air Quality Guidelines (WHO-AQG) relative risk (RR) of 1.04 (95% CI: 1.01-1.08), which was used to compute the PM2.5-caused deaths, was employed as well. Approximately 1716 (95% CI: 429-3,432) cases of PM2.5-related deaths were thought to have occurred throughout the study period. Despite the possibility that the actual numbers of both COVID19 and PM2.5-caused deaths are higher, humanitarian actors could use PM2.5 data to localize the efforts to minimize the spread of COVID-19.
Collapse
Affiliation(s)
- Amin Nawahda
- Faculty of Engineering, Palestine Technical University-Kadoorie (PTUK), Tulkarem, Palestine.
| |
Collapse
|
2
|
Lagged acute respiratory outcomes among children related to ambient pollutant exposure in a high exposure setting in South Africa. Environ Epidemiol 2022; 6:e228. [PMID: 36530932 PMCID: PMC9746739 DOI: 10.1097/ee9.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Acute ambient air pollution impacts on the respiratory health of children may be lagged across time. We determined the short-term lagged effects of particulate matter (PM2.5), sulphur dioxide (SO2), and oxides of nitrogen (NOx) on the respiratory health of children living in low-income communities. METHODS A school-based study was conducted using a repeated measures design, across summer and winter, in four schools in each of four suburbs in the Vaal Triangle, South Africa. Data for PM2.5, NOx, and SO2 were obtained from monitoring stations within close proximity of the schools. Over 10 school days in each phase, grade 4 children completed a symptoms log and lung function tests. Parents completed a child respiratory questionnaire. Generalized estimation equations models adjusted for covariates of interest in relation to lung function outcomes and air pollutants including lag effects of 1-5 days. RESULTS Daily PM2.5, NOx, and SO2 median concentration levels were frequently higher than international standards. Among the 280 child participants (mean age 9 years), the prevalence of symptoms based on probable asthma was 9.6%. There was a consistent increased pollutant-related risk for respiratory symptoms, except for NOx and shortness of breath. Lung function, associated with pollutant fluctuations across the different lags, was most pronounced for peak expiratory flow rate (PEFR) for PM2.5 and SO2. A preceding 5-day average SO2 exposure had the largest loss (7.5 L/minute) in PEFR. CONCLUSIONS Lagged declines in daily lung function and increased odds of having respiratory symptoms were related to increases in PM2.5 and SO2 among a school-based sample of children.
Collapse
|
3
|
Zhang W, Ma R, Wang Y, Jiang N, Zhang Y, Li T. The relationship between particulate matter and lung function of children: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119735. [PMID: 35810981 DOI: 10.1016/j.envpol.2022.119735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 05/17/2023]
Abstract
There have been many studies on the relationship between fine particulate matter (PM2.5) and lung function. However, the impact of short-term or long-term PM2.5 exposures on lung function in children is still inconsistent globally, and the reasons for the inconsistency of the research results are not clear. Therefore, we searched the PubMed, Embase and Web of Science databases up to May 2022, and a total of 653 studies about PM2.5 exposures on children's lung function were identified. Random effects meta-analysis was used to estimate the combined effects of the 25 articles included. PM2.5 concentrations in short-term exposure studies mainly come from individual and site monitoring. And for every 10 μg/m3 increase, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and peak expiratory flow (PEF) decreased by 21.39 ml (95% CI: 13.87, 28.92), 25.66 ml (95% CI: 14.85, 36.47) and 1.76 L/min (95% CI: 1.04, 2.49), respectively. The effect of PM2.5 on lung function has a lag effect. For every 10 μg/m3 increase in the 1-day moving average PM2.5 concentration, FEV1, FVC and PEF decreased by 14.81 ml, 15.40 ml and 1.18 L/min, respectively. PM2.5 concentrations in long-term exposure studies mainly obtained via ground monitoring stations. And for every 10 μg/m3 increase, FEV1, FVC and PEF decreased by 61.00 ml (95% CI: 25.80, 96.21), 54.47 ml (95% CI: 7.29, 101.64) and 10.02 L/min (95% CI: 7.07, 12.98), respectively. The sex, body mass index (BMI), relative humidity (RH), temperature (Temp) and the average PM2.5 exposure level modify the relationship between short-term PM2.5 exposure and lung function. Our study provides further scientific evidence for the deleterious effects of PM2.5 exposures on children's lung function, suggesting that exposure to PM2.5 is detrimental to children's respiratory health. Appropriate protective measures should be taken to reduce the adverse impact of air pollution on children's health.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Public Health, Nanjing Medical University, Nanjing, 211100, China; China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Ning Jiang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Tiantian Li
- School of Public Health, Nanjing Medical University, Nanjing, 211100, China; China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China.
| |
Collapse
|
4
|
Aghababaeian H, Ostadtaghizadeh A, Ardalan A, Asgary A, Akbary M, Yekaninejad MS, Stephens C. Global Health Impacts of Dust Storms: A Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211018390. [PMID: 34103932 PMCID: PMC8150667 DOI: 10.1177/11786302211018390] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/27/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dust storms and their impacts on health are becoming a major public health issue. The current study examines the health impacts of dust storms around the world to provide an overview of this issue. METHOD In this systematic review, 140 relevant and authoritative English articles on the impacts of dust storms on health (up to September 2019) were identified and extracted from 28 968 articles using valid keywords from various databases (PubMed, WOS, EMBASE, and Scopus) and multiple screening steps. Selected papers were then qualitatively examined and evaluated. Evaluation results were summarized using an Extraction Table. RESULTS The results of the study are divided into two parts: short and long-term impacts of dust storms. Short-term impacts include mortality, visitation, emergency medical dispatch, hospitalization, increased symptoms, and decreased pulmonary function. Long-term impacts include pregnancy, cognitive difficulties, and birth problems. Additionally, this study shows that dust storms have devastating impacts on health, affecting cardiovascular and respiratory health in particular. CONCLUSION The findings of this study show that dust storms have significant public health impacts. More attention should be paid to these natural hazards to prepare for, respond to, and mitigate these hazardous events to reduce their negative health impacts.Registration: PROSPERO registration number CRD42018093325.
Collapse
Affiliation(s)
- Hamidreza Aghababaeian
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Nursing and Emergency, Dezful University of Medical Sciences, Dezful, Iran
| | - Abbas Ostadtaghizadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ardalan
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asgary
- Disaster and Emergency Management, School of Administrative Studies, York University, Toronto, Canada
| | - Mehry Akbary
- Department of Climatology, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolyn Stephens
- UCL Bartlett Development Planning Unit, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Hashizume M, Kim Y, Ng CFS, Chung Y, Madaniyazi L, Bell ML, Guo YL, Kan H, Honda Y, Yi SM, Kim H, Nishiwaki Y. Health Effects of Asian Dust: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:66001. [PMID: 32589456 PMCID: PMC7319773 DOI: 10.1289/ehp5312] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Potential adverse health effects of Asian dust exposure have been reported, but systematic reviews and quantitative syntheses are lacking. OBJECTIVE We reviewed epidemiologic studies that assessed the risk of mortality, hospital admissions, and symptoms/dysfunction associated with exposure to Asian dust. METHODS We performed a systematic search of PubMed and Web of Science to identify studies that reported the association between Asian dust exposure and human health outcomes. We conducted separate meta-analyses using a random-effects model for mortality and hospital admissions for a specific health outcome and assessed pooled estimates for each lag when at least three studies were available for a specific lag. RESULTS We identified 89 studies that met our inclusion criteria for the systematic review, and 21 studies were included in the meta-analysis. The pooled estimates (percentage changes) of mortality from circulatory and respiratory causes for Asian dust days vs. non-Asian dust days were 2.33% [95% confidence interval (CI): 0.76, 3.93] increase at lag 0 and 3.99% (95% CI: 0.08, 8.06) increase at lag 3, respectively. The increased risk for hospital admissions for respiratory disease, asthma, and pneumonia peaked at lag 3 by 8.85% (95% CI: 0.80, 17.55), 14.55% (95% CI: 6.74, 22.94), and 8.51% (95% CI: 2.89, 14.44), respectively. Seven of 12 studies reported reduced peak expiratory flow, and 16 of 21 studies reported increased respiratory symptoms associated with Asian dust exposure. There were substantial variations between the studies in definitions of Asian dust, study designs, model specifications, and confounder controls. DISCUSSION We found evidence of increased mortality and hospital admissions for circulatory and respiratory events. However, the number of studies included in the meta-analysis was not large and further evidences are merited to strengthen our conclusions. Standardized protocols for epidemiological studies would facilitate interstudy comparisons. https://doi.org/10.1289/EHP5312.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chris Fook Sheng Ng
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Yue Leon Guo
- Environmental and Occupational Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
6
|
Shin JM, Kim HJ, Park JH, Hwang YJ, Lee HM. Asian Sand Dust Regulates IL-32 Production in Airway Epithelial Cells: Inhibitory Effect of Glucocorticoids. Am J Rhinol Allergy 2019; 33:403-412. [PMID: 30919652 DOI: 10.1177/1945892419839538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Epidemiologic studies have reported that Asian sand dust (ASD) is associated with chronic inflammatory diseases of the respiratory system. Glucocorticoids (GCs) have potent anti-inflammatory properties. The aims of this study were to evaluate the effects of GCs on ASD-induced interleukin-32 (IL-32) expression and to identify the underlying signaling pathways in airway epithelial cells. Methods A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cytotoxicity in A549 and human primary nasal epithelial cells. Expression levels of IL-32 messenger RNA and protein were measured by Western blot, real-time polymerase chain reaction, ELISA, and immunofluorescence staining. Signaling pathways were analyzed using specific inhibitors of Akt, MAPK, or NF- κB. The effects of GCs on the expression of ASD-induced IL-32 were confirmed with ex vivo organ cultures of the nasal interior turbinate. Results ASD (0–400 ng/mL) had no significant cytotoxic effects in A549 cells and human primary nasal epithelial cells. Expression levels of IL-32 were dose-dependently upregulated by ASD treatment in A549 cells. ASD induced phosphorylation of Akt, MAPK, and NF-κB, whereas GCs and specific inhibitors of Akt, MAPK, and NF-κB downregulated these activations and the expression of IL-32. These findings were further confirmed in human primary nasal epithelial cells and ex vivo organ cultures of the nasal interior turbinate. Conclusions GCs have an inhibitory effect on ASD-induced IL-32 expression via the Akt, MAPK, and NF- κB signaling pathways in airway epithelial cells.
Collapse
Affiliation(s)
- Jae-Min Shin
- 1 Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwee-Jin Kim
- 2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hoo Park
- 2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - You Jin Hwang
- 3 Department of Life Science, College of BioNano, Gachon University, Incheon, Republic of Korea
| | - Heung-Man Lee
- 1 Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.,2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea.,4 Institute for Korea University IVD Support Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Modeling Heterogeneous Oxidation of NOx, SO2 and Hydrocarbons in the Presence of Mineral Dust Particles under Various Atmospheric Environments. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1299.ch015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Ghozikali MG, Ansarin K, Naddafi K, Nodehi RN, Yaghmaeian K, Hassanvand MS, Kashani H, Jaafari J, Atafar Z, Faraji M, Ghanbarian M, Rezaei S, Seyedrezazadeh E, Goudarzi G, Yunesian M. Short-term effects of particle size fractions on lung function of late adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21822-21832. [PMID: 29796884 DOI: 10.1007/s11356-018-2264-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Although ambient air pollution has been linked to reduced lung function in healthy students, longitudinal studies that compare the response of asthmatic and healthy adolescents are lacking. To evaluate lung function responses to short-term ambient air particulate matter (PM10, PM2.5, and PM1) levels, we conducted a study on high school students aged 15-18 years. The aim of this study was to assess effects of acute exposure to ambient air particulate matter (PM) on lung function in healthy and asthmatic late adolescents. We examined associations of lung function indices and ambient PM levels in 23 asthmatic and 23 healthy students. Paired-samples T test was used to evaluate the association of exposure to airborne PM concentrations with lung function test results (FVC, FEV1, FEV1/FVC, and FEF25-75). We observed negative impact of exposure to an increased concentration of ambient air PM10, PM2.5, and PM1 on lung function parameters of asthmatic and healthy late adolescents. These findings are consistent with other similar short-term studies which have confirmed the adverse effect of PM air pollution. These associations were stronger in asthmatic subjects compared with those in healthy ones. There are significant adverse effects of ambient air PM on pulmonary function of adolescents, especially asthmatics.
Collapse
Affiliation(s)
- Mohammad Ghanbari Ghozikali
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Research Methodology and Data Analysis Department, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Jaafari
- School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Atafar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Faraji
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbarian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rezaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Methodology and Data Analysis Department, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030299. [PMID: 28335405 PMCID: PMC5369135 DOI: 10.3390/ijerph14030299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 01/19/2023]
Abstract
Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5) on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD) in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m³ in PM2.5 and 0.01 km-1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.
Collapse
|
10
|
Effects of Short-Term Exposure to Particulate Air Pollutants on the Inflammatory Response and Respiratory Symptoms: A Panel Study in Schoolchildren from Rural Areas of Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100983. [PMID: 27706066 PMCID: PMC5086722 DOI: 10.3390/ijerph13100983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023]
Abstract
The relationship between particulate air pollutants and respiratory symptoms in children has not been consistent among studies, potentially owing to differences in the inflammatory response to different particulate air pollutants. This study aimed to investigate the effect of particulate air pollutants on respiratory symptoms and the inflammatory response in schoolchildren. Three hundred-and-sixty children were included in the study. The children recorded daily respiratory symptom scores for October 2015. In addition, the daily amount of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α production was assessed in THP1 cells stimulated with suspended particulate matter (SPM), which was collected every day during the study period. Generalized estimating equation logistic regression analyses were used to estimate the associations among respiratory symptoms and the daily levels of SPM, IL-6, IL-8, and TNF-α. Daily SPM levels were not associated with respiratory symptoms or the daily IL-6, IL-8, and TNF-α levels. Conversely, there was a significant association between respiratory symptoms and the daily IL-6, IL-8, and TNF-α levels. These results suggested that the effects of particulate air pollutants on respiratory symptoms in schoolchildren might depend more on the pro-inflammatory response to them than on their mass concentration.
Collapse
|
11
|
Association between Outdoor Fungal Concentrations during Winter and Pulmonary Function in Children with and without Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050452. [PMID: 27136569 PMCID: PMC4881077 DOI: 10.3390/ijerph13050452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022]
Abstract
Outdoor fungi are important components of airborne particulate matter (PM). However, the associations between pulmonary function and outdoor fungi are less well known compared to other airborne PM constituents. The objective of this study was to investigate the association between outdoor fungi and pulmonary function in children. Morning peak expiratory flow (PEF) rates were measured daily in 339 schoolchildren (including 36 with asthma), aged 10 to 12, 2 to 27 February 2015. Airborne PM was collected on filters, using a high volume air sampler, each day during the study period. The daily concentration of outdoor fungi-associated PM was calculated using a culture-based method. A linear mixed model was used to estimate the association between PEF values and daily concentrations of outdoor fungi, and the daily levels of suspended PM (SPM) and PM ≤ 2.5 μm (PM2.5). An increase in the interquartile range (46.2 CFU/m3) for outdoor fungal concentration led to PEF changes of −1.18 L/min (95% confidence interval, −2.27 to −0.08) in all children, 1.22 L/min (−2.96 to 5.41) in children without asthma, and −1.44 L/min (−2.57 to −0.32) in children with asthma. Outdoor fungi showed a significant negative correlation with PM2.5 levels (r = −0.4, p = 0.04), but not with SPM (r = ‒0.3, p = 0.10) levels. Outdoor fungi may be associated with pulmonary dysfunction in children. Furthermore, children with asthma may show greater pulmonary dysfunction than those without asthma.
Collapse
|
12
|
Matsumoto K, Izuhara K. Anaphylaxis--two stories not covered by the current guidelines. Allergol Int 2016; 65:1-2. [PMID: 26740297 DOI: 10.1016/j.alit.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/26/2022] Open
|