1
|
Chen H, Zha J, Tang R, Chen G. T-cell immunoglobulin and mucin-domain containing-3 (TIM-3): Solving a key puzzle in autoimmune diseases. Int Immunopharmacol 2023; 121:110418. [PMID: 37290326 DOI: 10.1016/j.intimp.2023.110418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dysfunctional immune cells participate in the pathogenesis of a variety of autoimmune diseases, although the specific mechanisms remain elusive and effective clinical interventions are lacking. Recent research on immune checkpoint molecules has revealed significant expression of T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) on the surfaces of various immune cells. These include different subsets of T cells, macrophages, dendritic cells, natural killer cells, and mast cells. Further investigation into its protein structure, ligands, and intracellular signaling pathway activation mechanisms has found that TIM-3, by binding with different ligands, is involved in the regulation of crucial biological processes such as proliferation, apoptosis, phenotypic transformation, effector protein synthesis, and cellular interactions of various immune cells. The TIM-3-ligand axis plays a pivotal role in the pathogenesis of numerous conditions, including autoimmune diseases, infections, cancers, transplant rejection, and chronic inflammation. This article primarily focuses on the research findings of TIM-3 in the field of autoimmune diseases, with a special emphasis on the structure and signaling pathways of TIM-3, its types of ligands, and the potential mechanisms implicated in systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, as well as other autoimmune diseases and chronic inflammation. The latest research results in the field of immunology suggest that TIM-3 dysfunction affects various immune cells and participates in the pathogenesis of diseases. Monitoring the activity of its receptor-ligand axis can serve as a novel biological marker for disease clinical diagnosis and prognosis evaluation. More importantly, the TIM-3-ligand axis and the downstream signaling pathway molecules may become key targets for targeted intervention treatment of autoimmune-related diseases.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Runyan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Correlation of Tim-3 expression with chemokine levels for predicting the prognosis of patients with glioblastoma. J Neuroimmunol 2021; 355:577575. [PMID: 33901809 DOI: 10.1016/j.jneuroim.2021.577575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 11/21/2022]
Abstract
Glioblastoma (GBM) immunotherapy, which blocks the checkpoint inhibitor molecule T cell immunoglobulin domain and mucin domain-3 (Tim-3), has potential therapeutic applications. However, not all patients do benefit from the targeted therapy. This study aimed to explore Tim-3 expression correlated chemokine profiles and immune cell infiltration and investigate their potential as prognostic markers of glioblastoma (GBM) immunotherapy. We analyzed transcriptional data of GBM from TCGA database, to measure Tim-3 expression by R package DESeq2 analysis and observed differentially expressed genes in GBM samples with high Tim-3 expression levels. We also probed the relative gene enrichment pathways. Tim-3 expression was evident in biological processes including the recruitment of immune cells. We also identified some chemokines related to Tim-3 expression. The expression levels of CCL18, CXCL13 and CCL7 were significantly higher in GBM tissues with high Tim-3 expression than in GBM tissues with low Tim-3 expression. In addition, exploring the relationship between immune cell infiltration and Tim-3 expression suggested that Tim-3 expression was positively related to significant immune cell infiltration.
Collapse
|
3
|
Boehne C, Behrendt AK, Meyer-Bahlburg A, Boettcher M, Drube S, Kamradt T, Hansen G. Tim-3 is dispensable for allergic inflammation and respiratory tolerance in experimental asthma. PLoS One 2021; 16:e0249605. [PMID: 33822811 PMCID: PMC8023500 DOI: 10.1371/journal.pone.0249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been described as a transmembrane protein, expressed on the surface of various T cells as well as different cells of innate immunity. It has since been associated with Th1 mediated autoimmune diseases and transplantation tolerance studies, thereby indicating a possible role of this receptor in counter-regulation of Th2 immune responses. In the present study we therefore directly examined the role of Tim-3 in allergic inflammation and respiratory tolerance. First, Tim-3-/- mice and wild type controls were immunized and challenged with the model allergen ovalbumin (OVA) to induce an asthma-like phenotype. Analysis of cell numbers and distribution in the bronchoalveolar lavage (BAL) fluid as well as lung histology in H&E stained lung sections demonstrated a comparable degree of eosinophilic inflammation in both mouse strains. Th2 cytokine production in restimulated cell culture supernatants and serum IgE and IgG levels were equally increased in both genotypes. In addition, cell proliferation and the distribution of different T cell subsets were comparable. Moreover, analysis of both mouse strains in our respiratory tolerance model, where mucosal application of the model allergen before immunization, prevents the development of an asthma-like phenotype, revealed no differences in any of the parameters mentioned above. The current study demonstrates that Tim-3 is dispensable not only for the development of allergic inflammation but also for induction of respiratory tolerance in mice in an OVA-based model.
Collapse
Affiliation(s)
- Carolin Boehne
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Ann-Kathrin Behrendt
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
| | - Martin Boettcher
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Sebastian Drube
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Thomas Kamradt
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Gesine Hansen
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
4
|
IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep 2018; 8:18052. [PMID: 30575775 PMCID: PMC6303299 DOI: 10.1038/s41598-018-36440-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Certain proteases derived from house dust mites and plants are considered to trigger initiation of allergic airway inflammation by disrupting tight junctions between epithelial cells. It is known that inhalation of proteases such as house dust mite-derived Der p1 and/or papaya-derived papain caused airway eosinophilia in naïve mice and even in Rag-deficient mice that lack acquired immune cells such as T, B and NKT cells. In contrast, little is known regarding the possible involvement of proteases derived from Aspergillus species (fungal-associated proteases; FAP), which are ubiquitous saprophytic fungi in the environment, in the development of allergic airway eosinophilia. Here, we found that inhalation of FAP by naïve mice led to airway eosinophilia that was dependent on protease-activated receptor-2 (PAR2), but not TLR2 and TLR4. Those findings suggest that the protease activity of FAP, but not endotoxins in FAP, are important in the setting. In addition, development of that eosinophilia was mediated by innate immune cells (ILCs) such as innate lymphoid cells, but not by acquired immune cells such as T, B and NKT cells. Whereas IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are involved in induction of FAP-induced ILC-mediated airway eosinophilia, IL-33-rather than IL-25 and/or TSLP-was critical for the eosinophilia in our model. Our findings improve our understanding of the molecular mechanisms involved in induction of airway inflammation by FAP.
Collapse
|
5
|
Hu T, Fan X, Ma L, Liu J, Chang Y, Yang P, Qiu S, Chen T, Yang L, Liu Z. TIM4-TIM1 interaction modulates Th2 pattern inflammation through enhancing SIRT1 expression. Int J Mol Med 2017; 40:1504-1510. [PMID: 28949386 PMCID: PMC5627870 DOI: 10.3892/ijmm.2017.3150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/14/2017] [Indexed: 01/30/2023] Open
Abstract
Skewed T helper 2 (Th2)-cell polarization plays a critical role in the pathogenesis of allergic inflammations; however, the underlying mechanisms require further elucidation. The aim of the present study was to investigate the mechanisms through which the interaction between T-cell immunoglobulin and mucin domain (TIM)4 and TIM1 regulates the expression of silent information regulator 1 (SIRT1) in Th2 cells, and the role of SIRT1 in Th2-cell polarization during nasal allergic inflammation. The results demonstrated that TIM4 expression by splenic dendritic cells was increased in mice with allergic rhinitis, and the TIM4̸TIM1 interaction promoted CD4+ T cells to express SIRT1 during allergic inflammation via enhancing phosphoinositide 3-kinase/Akt phosphorylation. SIRT1 then facilitated CD4+ T-cell proliferation through downregulating the expression of Fas ligand, caspase-3 and p53 in mice with nasal allergic inflammation. In conclusion, the interaction of TIM4̸TIM1 was found to promote Th2-cell proliferation through enhancing SIRT1 expression in mice with nasal allergic rhinitis.
Collapse
Affiliation(s)
- Tianyong Hu
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaoqin Fan
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Li Ma
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Jiangqi Liu
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Pingchang Yang
- Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Shuqi Qiu
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Tao Chen
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Litao Yang
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| | - Zhiqiang Liu
- Immunology and Allergy Laboratory, Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|