1
|
Shin JY, Kim BM, Jang SI. Diospyros lotus leaf extract and its main component, myricitrin, inhibit both histamine‑dependent and histamine‑independent itching. Exp Ther Med 2025; 29:121. [PMID: 40297616 PMCID: PMC12035596 DOI: 10.3892/etm.2025.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Pruritus is a distressing symptom associated with various dermatological, systemic and neurological conditions, markedly impairing quality of life. Pruritus arises through histamine-dependent and histamine-independent pathways, involving mediators such as histamine, gastrin-releasing peptide (GRP), interleukin-31 (IL-31) and STAT3 signaling. The present study aimed to investigate the antipruritic effects of Diospyros lotus leaf extract (DLE) and its major constituent, myricitrin (MC), on ICR mice using compound 48/80 (histamine-dependent) and chloroquine (histamine-independent) itch models. Serum levels of histamine and IL-31 were measured by ELISA, and mast cell infiltration was assessed via toluidine blue staining. Furthermore, the expression and activation of GRP receptor (GRPR), IL-31RA and STAT3 in the spinal cord were analyzed using western blotting and immunofluorescence staining. Notably, DLE and MC significantly reduced scratching behavior, serum histamine levels and mast cell infiltration in both models. Immunofluorescence staining and western blot analysis revealed that DLE and MC downregulated GRPR, IL-31 receptor A and phosphorylated STAT3 expression in the spinal cord, indicating modulation of central itch signaling. Additionally, DLE and MC suppressed IL-31 levels in serum and skin tissues. These findings indicated that DLE and MC may alleviate pruritus through multiple mechanisms, including mast cell stabilization, histamine reduction and modulation of central itch pathways. The broad-spectrum antipruritic activity of DLE and MC highlights their potential as natural therapeutic agents for diverse pruritic conditions, offering a safer alternative to synthetic antipruritic drugs. Further research is warranted to validate these findings in clinical settings and to elucidate the molecular mechanisms underlying their efficacy.
Collapse
Affiliation(s)
- Jae Young Shin
- Institute of Health and Science, Jeonju University, Jeonju, Jeonbuk 55069, Republic of Korea
| | - Bo Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seon Il Jang
- Institute of Health and Science, Jeonju University, Jeonju, Jeonbuk 55069, Republic of Korea
- Department of Health Management, Jeonju University, Jeonju, Jeonbuk 55069, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Pan Y, Liu B, Zhang Y, Yin C, Wang J, Nie H, Xu R, Tai Y, He X, Shao X, Liang Y, Fang J, Liu B. Neutrophil-derived oxidative stress contributes to skin inflammation and scratching in a mouse model of allergic contact dermatitis via triggering pro-inflammatory cytokine and pruritogen production in skin. Biochem Pharmacol 2024; 223:116163. [PMID: 38522555 DOI: 10.1016/j.bcp.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Allergic contact dermatitis (ACD) is a common skin disease featured with skin inflammation and a mixed itch/pain sensation. The itch/pain causes the desire to scratch, affecting both physical and psychological aspects of patients. Nevertheless, the mechanisms underlying itch/pain sensation of ACD still remain elusive. Here, we found that oxidative stress and oxidation-related injury were remarkably increased in the inflamed skin of a mouse model of ACD. Reducing oxidative stress significantly attenuated itch/pain-related scratching, allokonesis and skin inflammation. RNA-Sequencing reveals oxidative stress contributes to a series of skin biological processes, including inflammation and immune response. Attenuating oxidative stress reduces overproduction of IL-1β and IL-33, two critical cytokines involved in inflammation and pain/itch, in the inflamed skin of model mice. Exogenously injecting H2O2 into the neck skin of naïve mice triggered IL-33 overproduction in skin keratinocytes and induced scratching, which was reduced in mice deficient in IL-33 receptor ST2. ACD model mice showed remarkable neutrophil infiltration in the inflamed skin. Blocking neutrophil infiltration reduced oxidative stress and attenuated scratching and skin inflammation. Therefore, our study reveals a critical contribution of neutrophil-derived oxidative stress to skin inflammation and itch/pain-related scratching of ACD model mice via mechanisms involving the triggering of IL-33 overproduction in skin keratinocytes. Targeting skin oxidative stress may represent an effective therapy for ameliorating ACD.
Collapse
Affiliation(s)
- Yunqin Yang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunwen Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Wang B, Wang LN, Wu B, Guo R, Zhang L, Zhang JT, Wang ZH, Wu F, Feng Y, Liu H, Jin XH, Miao XH, Liu T. Astrocyte PERK and IRE1 Signaling Contributes to Morphine Tolerance and Hyperalgesia through Upregulation of Lipocalin-2 and NLRP3 Inflammasome in the Rodent Spinal Cord. Anesthesiology 2024; 140:558-577. [PMID: 38079113 DOI: 10.1097/aln.0000000000004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
BACKGROUND Endoplasmic reticulum stress plays a crucial role in the pathogenesis of neuroinflammation and chronic pain. This study hypothesized that PRKR-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme type 1 (IRE1) regulate lipocalin-2 (LCN2) and Nod-like receptor family pyrin domain containing 3 (NLRP3) expression in astrocytes, thereby contributing to morphine tolerance and hyperalgesia. METHODS The study was performed in Sprague-Dawley rats and C57/Bl6 mice of both sexes. The expression of LCN2 and NLRP3 was assessed by Western blotting. The tail-flick, von Frey, and Hargreaves tests were used to evaluate nociceptive behaviors. Chromatin immunoprecipitation was conducted to analyze the binding of activating transcription factor 4 (ATF4) to the promoters of LCN2 and TXNIP. Whole-cell patch-clamp recordings were used to evaluate neuronal excitability. RESULTS Pharmacologic inhibition of PERK and IRE1 attenuated the development of morphine tolerance and hyperalgesia in male (tail latency on day 7, 8.0 ± 1.13 s in the morphine + GSK2656157 [10 μg] group vs. 5.8 ± 0.65 s in the morphine group; P = 0.04; n = 6 rats/group) and female (tail latency on day 7, 6.0 ± 0.84 s in the morphine + GSK2656157 [10 μg] group vs. 3.1 ± 1.09 s in the morphine group; P = 0.0005; n = 6 rats/group) rats. Activation of PERK and IRE1 upregulated expression of LCN2 and NLRP3 in vivo and in vitro. Chromatin immunoprecipitation analysis showed that ATF4 directly bound to the promoters of the LCN2 and TXNIP. Lipocalin-2 induced neuronal hyperexcitability in the spinal cord and dorsal root ganglia via melanocortin-4 receptor. CONCLUSIONS Astrocyte endoplasmic reticulum stress sensors PERK and IRE1 facilitated morphine tolerance and hyperalgesia through upregulation of LCN2 and NLRP3 in the spinal cord. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bing Wang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; and Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey (current position)
| | - Li-Na Wang
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, Jiangsu Province, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Feng Wu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Pain Management, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Hua Miao
- Department of Pain, The Affiliated Hospital of Nantong University, Nantong, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China; and College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
4
|
Akl EM, El-Eraki JM, Elfallah AA, Mohamed NH, Maher AM, Mansour AE, Abdelsalam OH. Does Indoxyl Sulfate Have a Role in Uremic Pruritus? A Laboratory and Interventional Study. J Cutan Med Surg 2024; 28:44-50. [PMID: 38156627 DOI: 10.1177/12034754231220935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pruritus is a common complaint in patients with end-stage renal disease. Indoxyl sulfate (IS) is a tryptophan end metabolite extremely renal excreted. Activated charcoal can interfere with IS intestinal absorption. OBJECTIVES To evaluate the serum level of IS and the effect of activated charcoal on uremic pruritus. MATERIALS AND METHODS In all, 135 participants were divided into 2 main groups. In total, 45 normal and healthy individuals as a control group and 90 patients on regular hemodialysis; 45 of these patients had uremic pruritus and the other 45 were not complaining of uremic pruritus. Serum IS was measured. Activated charcoal was used by patients with uremic pruritus. The severity of pruritus and Dermatology Life Quality Index (DLQI) were assessed. RESULTS The serum IS was significantly elevated in uremic patients than in control subjects (P < .001) and significantly elevated in uremic patients without pruritus (P < .001). Furthermore, there were positive significant correlations between the serum IS and both severity of pruritus (P < .001) and DLQI (P < .001). After activated charcoal usage, there was a significant decrease in IS level with the improvement of pruritus and quality of life of patients. CONCLUSIONS IS may play a role in uremic pruritus. Activated charcoal could be considered a treatment for uremic pruritus.
Collapse
Affiliation(s)
- Essam Mohamed Akl
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Jeylan M El-Eraki
- Specialist of Dermatology and Andrology, Ministry of Health and Population, Cairo, Egypt
| | - Assma A Elfallah
- Department of Clinical Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nelly H Mohamed
- Specialist of Clinical Pathology, Ministry of Health and Population, Benha, Egypt
| | - Amr M Maher
- Specialist of Internal Medicine, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed E Mansour
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha, Egypt
| | - Osama H Abdelsalam
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Shin JY, Cho BO, Park JH, Kang ES, Kim YS, Jang SI. Diospyros lotus leaf extract and its main component myricitrin regulate pruritus through the inhibition of astrocyte activation. Exp Ther Med 2023; 26:323. [PMID: 37346401 PMCID: PMC10280317 DOI: 10.3892/etm.2023.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 06/23/2023] Open
Abstract
Diospyros lotus is a deciduous plant native to Asian countries, including Korea, Japan and China, and southeast Europe. In traditional medicine, Diospyros lotus is used as an anticancer, antidiabetic and antipyretic agent. The present study aimed to evaluate the effect of Diospyros lotus leaf extract (DLE) in ameliorating histamine-independent pruritus. Activation of signal transducer and activator of transcription 3 (STAT3) in astrocytes contributes to pruritus. In this study, the effects of DLE and its main component, myricetin (MC), on the activation of STAT3, expression of glial fibrillary acidic protein (GFAP), and production of lipocalin-2 (LCN2) in IL-6-treated astrocytes and chloroquine-injected mice were investigated through western blot, reverse transcription-quantitative PCR, and immunofluorescence staining. DLE and MC inhibited STAT3 activation, GFAP expression and LCN2 release via inositol 1,4,5-trisphosphate receptor type 1 blockade in astrocytes. DLE and MC ameliorated scratching behavior, expression of GFAP, mast cell infiltration and serum IL-6 levels in chloroquine-injected mice. These results suggested that DLE and MC can be used as oral therapeutic agents for the treatment and management of pruritus.
Collapse
Affiliation(s)
- Jae Young Shin
- Department of Food Science and Technology, Jeonbuk National University, Deokjin, Jeonju, Jeollabuk 54896, Republic of Korea
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Byoung Ok Cho
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Ji Hyeon Park
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Eun Seo Kang
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Young Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Deokjin, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Seon Il Jang
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
- Department of Health Management, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| |
Collapse
|
6
|
Gao X, Wang Z, Du L. Glial Cells and Itch: Possible Targets for Novel Antipruritic Therapies. ACS Chem Neurosci 2023; 14:331-339. [PMID: 36655585 DOI: 10.1021/acschemneuro.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glial cells, which are the non-neuronal cells of the nervous system, play essential roles in brain development, homeostasis, and diseases. Glial cells have attracted attention because of their active involvement in many neurological disorders. In recent years, substantial progress has been made in our understanding of the roles of glial cells in the pathogenesis of itch. Mechanistically, central and peripheral glial cells modulate acute and chronic pruritus via different mechanisms. In this review, we present the current knowledge about the involvement of glial cells in the modulation of itch processing and the mechanism of glial cell activation under itch stimuli. Targeting glial cells may provide novel approaches for itch therapy.
Collapse
Affiliation(s)
- Xinyi Gao
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhifei Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixia Du
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Wang W, Li Q, Zhao Z, Liu Y, Wang Y, Xiong H, Mei Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front Pharmacol 2022; 12:805222. [PMID: 35095512 PMCID: PMC8794748 DOI: 10.3389/fphar.2021.805222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Qiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Yutong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
8
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
9
|
Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways. Inflammation 2020; 43:1716-1728. [DOI: 10.1007/s10753-020-01245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Effect of Luteolin and Apigenin on the Production of Il-31 and Il-33 in Lipopolysaccharides-Activated Microglia Cells and Their Mechanism of Action. Nutrients 2020; 12:nu12030811. [PMID: 32204450 PMCID: PMC7146493 DOI: 10.3390/nu12030811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Microglia cells are resident cells of the central nervous system (CNS) charged with modulating inflammation in the CNS. Overstimulation of microglia cells continuously releases inflammatory mediators that contribute to neurodegenerative diseases. Apigenin and Luteolin are flavonoids with reported anti-inflammatory activities. However, their effects on IL-31 and IL-33 production in microglial cells are unknown. Here, we investigated the effects of apigenin and luteolin on the production of IL-31 and IL-33 by microglia cells. SIM-A9 microglial cells were pre-treated with apigenin or luteolin and stimulated with lipopolysaccharides to evaluate the production of IL-31 and IL-33. The study revealed that apigenin and luteolin inhibited the production of IL-31 and IL-33 at the gene and protein expressions and the secretion levels. Using potent inhibitors of MAPK, NF-κB, and STAT3 signaling pathways, we demonstrated that apigenin and luteolin’s suppression of ERK and JNK contributed to the inhibition of IL-31 and IL-33 in the MAPK pathway. Luteolin’s suppression of NF-κB and STAT3 also contributed to the inhibition of IL-31 and IL-33. Further analysis revealed that both compounds prevented nuclear translocation of activated NF-κB and STAT3, an act that subsequently prevented their DNA binding activities. Collectively, the study suggested that apigenin and luteolin’s regulation of signaling pathways contributed to the inhibition of IL-31 and IL-33, thus suggesting its importance for the improvement of neurodegenerative diseases involving these two cytokines.
Collapse
Affiliation(s)
- Denis Nchang Che
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea
| | - Byoung Ok Cho
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
| | - Ji-su Kim
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
| | - Jae Young Shin
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
| | - Hyun Ju Kang
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
| | - Seon Il Jang
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (B.O.C.); (J.-s.K.); (J.Y.S.); (H.J.K.)
- Correspondence: ; Tel.: +82-63-220-3124
| |
Collapse
|
11
|
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 2019; 67:1680-1693. [PMID: 31087583 DOI: 10.1002/glia.23639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hanikezi Yasheng
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
|
13
|
Jing PB, Cao DL, Li SS, Zhu M, Bai XQ, Wu XB, Gao YJ. Chemokine Receptor CXCR3 in the Spinal Cord Contributes to Chronic Itch in Mice. Neurosci Bull 2017; 34:54-63. [PMID: 28401489 DOI: 10.1007/s12264-017-0128-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown that the chemokine receptor CXCR3 and its ligand CXCL10 in the dorsal root ganglion mediate itch in experimental allergic contact dermatitis (ACD). CXCR3 in the spinal cord also contributes to the maintenance of neuropathic pain. However, whether spinal CXCR3 is involved in acute or chronic itch remains unclear. Here, we report that Cxcr3 -/- mice showed normal scratching in acute itch models but reduced scratching in chronic itch models of dry skin and ACD. In contrast, both formalin-induced acute pain and complete Freund's adjuvant-induced chronic inflammatory pain were reduced in Cxcr3 -/- mice. In addition, the expression of CXCR3 and CXCL10 was increased in the spinal cord in the dry skin model induced by acetone and diethyl ether followed by water (AEW). Intrathecal injection of a CXCR3 antagonist alleviated AEW-induced itch. Furthermore, touch-elicited itch (alloknesis) after compound 48/80 or AEW treatment was suppressed in Cxcr3 -/- mice. Finally, AEW-induced astrocyte activation was inhibited in Cxcr3 -/- mice. Taken together, these data suggest that spinal CXCR3 mediates chronic itch and alloknesis, and targeting CXCR3 may provide effective treatment for chronic pruritus.
Collapse
Affiliation(s)
- Peng-Bo Jing
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Si-Si Li
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Meixuan Zhu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Xue-Qiang Bai
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
Katayama I, Izuhara K. Itch: Its perception and involvement in allergy. Allergol Int 2017; 66:1-2. [PMID: 28081841 DOI: 10.1016/j.alit.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| |
Collapse
|