1
|
Wang W, Xu L, Zhou L, Wan S, Jiang L. Dioscorea nipponica Makino Relieves Ovalbumin-Induced Asthma in Mice through Regulating RKIP-Mediated Raf-1/MEK/MAPK/ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8077058. [PMID: 35757465 PMCID: PMC9217531 DOI: 10.1155/2022/8077058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Purpose Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-β1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Lingming Zhou
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shanhong Wan
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Libin Jiang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| |
Collapse
|
2
|
Wang X, Lu X, Ma C, Ma L, Han S. Combination of TLR agonist and miR146a mimics attenuates ovalbumin-induced asthma. Mol Med 2020; 26:65. [PMID: 32600285 PMCID: PMC7325265 DOI: 10.1186/s10020-020-00191-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background microRNA-146a has been reported to be a regulator in the process of attenuating asthma by inhibiting Toll-like receptor 2 (TLR2) pathway. This study aimed to investigate how miR146a-inhibitor affect the symptom of asthma and the underlying mechanisms. Methods Ovalbumin (OVA)-induced allergic asthma mice model was established by intraperitoneal injection with 20 μg of OVA. Total cells and differential inflammatory cells in bronchoalveolar lavage fluid were counted by flow cytometry. The expression levels of molecules and cytokines in TLR2 signaling pathway were detected by Q-PCR and ELISA. Results miR146a-inhibitor attenuated OVA-induced allergic asthma by increasing Th1 cytokines in OVA-induced allergic asthma model, and the treatment of miR146a-inhibitor can reduce the inflammation caused by asthma, followed by the down-regulation of IL-5 and IL-13 in sorted ILC2. The inhibition of miR-146a significantly reduced symptoms of asthma model with TLR2-related molecules being up-regulated. Conclusion It was found that miR-146a is an important regulator in OVA-induced allergic asthma model, which can relieve symptoms of asthma through regulating TLR2 pathway. These findings provide a theoretical basis for solving asthma in clinical treatment.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68 Zhongshan Road, Liangxi District, Wuxi, 214002, Jiangsu, China
| | - Xiaoxian Lu
- Department of Critical Care Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68 Zhongshan Road, Liangxi District, Wuxi, 214002, Jiangsu, China
| | - Chenhui Ma
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68 Zhongshan Road, Liangxi District, Wuxi, 214002, Jiangsu, China
| | - Lihong Ma
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68 Zhongshan Road, Liangxi District, Wuxi, 214002, Jiangsu, China
| | - Shuguang Han
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68 Zhongshan Road, Liangxi District, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
3
|
Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, Monticelli LA, Artis D. Spatial and Temporal Mapping of Human Innate Lymphoid Cells Reveals Elements of Tissue Specificity. Immunity 2019; 50:505-519.e4. [PMID: 30770247 PMCID: PMC6594374 DOI: 10.1016/j.immuni.2019.01.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Innate lymphoid cells (ILC) play critical roles in regulating immunity, inflammation, and tissue homeostasis in mice. However, limited access to non-diseased human tissues has hindered efforts to profile anatomically-distinct ILCs in humans. Through flow cytometric and transcriptional analyses of lymphoid, mucosal, and metabolic tissues from previously healthy human organ donors, here we have provided a map of human ILC heterogeneity across multiple anatomical sites. In contrast to mice, human ILCs are less strictly compartmentalized and tissue localization selectively impacts ILC distribution in a subset-dependent manner. Tissue-specific distinctions are particularly apparent for ILC1 populations, whose distribution was markedly altered in obesity or aging. Furthermore, the degree of ILC1 population heterogeneity differed substantially in lymphoid versus mucosal sites. Together, these analyses comprise a comprehensive characterization of the spatial and temporal dynamics regulating the anatomical distribution, subset heterogeneity, and functional potential of ILCs in non-diseased human tissues.
Collapse
Affiliation(s)
- Naomi A Yudanin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Frederike Schmitz
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Joseph J C Thome
- Columbia Center for Translational Immunology, Department of Surgery and Department of Microbiology and Immunology, Columbia University Medical Center, NY, New York, 10032, USA
| | - Elia Tait Wojno
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850 USA
| | - Jesper B Moeller
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Melanie Schirmer
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isabel J Latorre
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Department of Surgery and Department of Microbiology and Immunology, Columbia University Medical Center, NY, New York, 10032, USA
| | - Laurel A Monticelli
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Stanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|