1
|
Paul EA, Cohen J, Geiger MK. Cardiac problems in the fetus: a review for pediatric providers. Curr Opin Pediatr 2023; 35:523-530. [PMID: 37466056 DOI: 10.1097/mop.0000000000001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to provide pediatric providers with a review of the diagnosis and management of fetal cardiac disease in the current era. RECENT FINDINGS Prenatal detection of congenital heart disease (CHD) has improved but is still imperfect. In experienced hands, fetal echocardiography can detect severe CHD as early as the first trimester and a majority of more subtle conditions in the second and third trimesters. Beyond detection, a prenatal diagnosis allows for lesion-specific counseling for families as well as for development of a multidisciplinary perinatal management plan, which may involve in-utero treatment. Given the diversity of cardiac diagnoses and the rarity of some, collaborative multicenter fetal cardiac research has gained momentum in recent years. SUMMARY Accurate diagnosis of fetal cardiac disease allows for appropriate counseling, pregnancy and delivery planning, and optimization of immediate neonatal care. There is potential for improving fetal CHD detection rates. Fetal interventions are available for certain conditions, and fetal and pediatric cardiac centers have developed management plans specific to the expected postnatal physiology.
Collapse
Affiliation(s)
- Erin A Paul
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
2
|
Gordon DM, Cunningham D, Zender G, Lawrence PJ, Penaloza JS, Lin H, Fitzgerald-Butt SM, Myers K, Duong T, Corsmeier DJ, Gaither JB, Kuck HC, Wijeratne S, Moreland B, Kelly BJ, Baylor-Johns Hopkins Center for Mendelian Genomics, Garg V, White P, McBride KL. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genet 2022; 18:e1010236. [PMID: 35737725 PMCID: PMC9258875 DOI: 10.1371/journal.pgen.1010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant’s effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes. Congenital heart disease is a common group of birth defects that are a leading cause of death in children under one year of age. There is strong evidence that genetics plays a role in causing congenital heart disease. While studies using individual cases have identified causative genes for those with a heart defect when accompanied by other birth defects or intellectual disabilities, for individuals who have only a heart defect without other problems, a genetic cause can be found in fewer than 10%. In this study, we enrolled families where there was more than one individual with a heart defect. This allowed us to take advantage of inheritance by searching for potential disease-causing genetic variants in common among all affected individuals in the family. Among 19 families studied, we were able to find a plausible disease-causing variant in eight of them and identified new genes that may cause or contribute to the presence of a heart defect. Two families had potential disease-causing variants in two different genes. We designed assays to test if the variants led to altered function of the protein coded by the gene, demonstrating a functional consequence that support the gene and variant as contributing to the heart defect. These findings show that studying families may be more effective than using individuals to find causes of heart defects. In addition, this family-based method suggests that changes in more than one gene may be required for a heart defect to occur.
Collapse
Affiliation(s)
- David M. Gordon
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David Cunningham
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick J. Lawrence
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jacqueline S. Penaloza
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hui Lin
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara M. Fitzgerald-Butt
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Myers
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Tiffany Duong
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Donald J. Corsmeier
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jeffrey B. Gaither
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Harkness C. Kuck
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Saranga Wijeratne
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Blythe Moreland
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Benjamin J. Kelly
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Peter White
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Kim L. McBride
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| |
Collapse
|
3
|
Theis JL, Olson TM. Whole Genome Sequencing in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9040117. [PMID: 35448093 PMCID: PMC9028226 DOI: 10.3390/jcdd9040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a genetically complex disorder. Whole genome sequencing enables comprehensive scrutiny of single nucleotide variants and small insertions/deletions, within both coding and regulatory regions of the genome, revolutionizing susceptibility-gene discovery research. Because millions of rare variants comprise an individual genome, identification of alleles linked to HLHS necessitates filtering algorithms based on various parameters, such as inheritance, enrichment, omics data, known genotype–phenotype associations, and predictive or experimental modeling. In this brief review, we highlight family and cohort-based strategies used to analyze whole genome sequencing datasets and identify HLHS candidate genes. Key findings include compound and digenic heterozygosity among several prioritized genes and genetic associations between HLHS and bicuspid aortic valve or cardiomyopathy. Together with findings of independent genomic investigations, MYH6 has emerged as a compelling disease gene for HLHS and other left-sided congenital heart diseases.
Collapse
Affiliation(s)
- Jeanne L. Theis
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Timothy M. Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
4
|
d'Udekem Y, Hutchinson D. Being Born with a Single Cardiac Ventricle: What Do We Tell Prospective Parents. Prenat Diagn 2022; 42:411-418. [PMID: 35278231 DOI: 10.1002/pd.6121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/07/2022]
Abstract
Being born with a single ventricle remains one of the most extreme congenital cardiac conditions. It encompasses a wide variety of lesions characterized by the existence of one small ventricular cavity. To allow survival, these patients must undergo a series of operations in the first years of life. It was long considered that the success of these interventions would be short-lived and that only a few of these patients would live beyond adulthood. The last decade has seen publication of multiple large outcomes researches on this population, and we now realize that its survival is longer than expected, but with a considerable burden of disease. As a consequence, the size of this single ventricle population is growing rapidly. As primary conveyer of the information on the future of these babies, obstetricians need to be aware of these changes in perspective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yves d'Udekem
- Division of Cardiac Surgery, Children's National Hospital and Children's National Heart Institute, Washington, DC
| | - Darren Hutchinson
- Department of Cardiology, The Royal Children's Hospital Melbourne and Fetal Cardiology Unit, The Royal Women's Hospital Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Oh NA, Hong X, Doulamis IP, Meibalan E, Peiseler T, Melero-Martin J, García-Cardeña G, Del Nido PJ, Friehs I. Abnormal Flow Conditions Promote Endocardial Fibroelastosis Via Endothelial-to-Mesenchymal Transition, Which Is Responsive to Losartan Treatment. JACC Basic Transl Sci 2021; 6:984-999. [PMID: 35024504 PMCID: PMC8733675 DOI: 10.1016/j.jacbts.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
EFE is a congenital cardiac pathology contributing to increased morbidity and mortality. The pathologic triggers of EFE remain to be characterized. To determine whether abnormal flow promotes EFE development, we used in vivo neonatal rodent surgical models and an in vitro model using human primary endocardial cells We established novel surgical model with flow profiles seen in patients that develop EFE. Static and turbulent flow conditions promoted EFE development in neonatal rodent hearts. Losartan treatment is shown to significantly ameliorate EFE progression and decreases mRNA and protein expression of EndoMT markers in neonatal rodent hearts. RNAseq analysis of human endocardial cells subjected to different flow conditions show that normal flow suppresses gene expression critical for mesenchymal differentiation and Notch signaling.
Endocardial fibroelastosis (EFE) is defined by fibrotic tissue on the endocardium and forms partly through aberrant endothelial-to-mesenchymal transition. However, the pathologic triggers are still unknown. In this study, we showed that abnormal flow induces EFE partly through endothelial-to-mesenchymal transition in a rodent model, and that losartan can abrogate EFE development. Furthermore, we translated our findings to human endocardial endothelial cells, and showed that laminar flow promotes the suppression of genes associated with mesenchymal differentiation. These findings emphasize the role of flow in promoting EFE in endocardial endothelial cells and provide a novel potential therapy to treat this highly morbid condition.
Collapse
Key Words
- AR, aortic regurgitation
- EFE, endocardial fibroelastosis
- EndoMT, endothelial-to-mesenchymal transition
- GO, gene ontology
- HLHS, hypoplastic left heart syndrome
- HUEEC, human endocardial endothelial cells
- HUVEC, human umbilical vein endothelial cells
- LSS, laminar shear stress
- LV, left ventricle
- congenital heart disease
- endocardial endothelial cells
- endocardial fibroelastosis
- endothelial-to-mesenchymal transition
- wall shear stress
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Nicholas A Oh
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Cardiothoracic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ilias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elamaran Meibalan
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Teresa Peiseler
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Guillermo García-Cardeña
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Ison HE, Griffin EL, Parrott A, Shikany AR, Meyers L, Thomas MJ, Syverson E, Demo EM, Fitzgerald KK, Fitzgerald-Butt S, Ziegler KL, Schartman AF, Stone KM, Helm BM. Genetic counseling for congenital heart disease - Practice resource of the national society of genetic counselors. J Genet Couns 2021; 31:9-33. [PMID: 34510635 DOI: 10.1002/jgc4.1498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Congenital heart disease (CHD) is an indication which spans multiple specialties across various genetic counseling practices. This practice resource aims to provide guidance on key considerations when approaching counseling for this particular indication while recognizing the rapidly changing landscape of knowledge within this domain. This resource was developed with consensus from a diverse group of certified genetic counselors utilizing literature relevant for CHD genetic counseling practice and is aimed at supporting genetic counselors who encounter this indication in their practice both pre- and postnatally.
Collapse
Affiliation(s)
- Hannah E Ison
- Stanford Center for Inherited Cardiovascular Disease, Stanford Health Care, Stanford, California, USA
| | - Emily L Griffin
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Amy R Shikany
- Cincinnati Children's Hospital Medical Center, The Heart Institute, Cincinnati, Ohio, USA
| | | | - Matthew J Thomas
- Department of Pediatrics, Division of Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Erin Syverson
- Department of Pediatrics, Division of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erin M Demo
- Sibley Heart Center Cardiology at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kristi K Fitzgerald
- Nemours Cardiac Center, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Sara Fitzgerald-Butt
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Allison F Schartman
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Kristyne M Stone
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Benjamin M Helm
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Niaz T, Johnson JN, Cetta F, Olson TM, Hagler DJ. Bicuspid Aortic Valve in Infants, Children, and Adolescents: A Review for Primary Care Providers. Pediatr Rev 2021; 42:233-244. [PMID: 33931508 DOI: 10.1542/pir.2019-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Talha Niaz
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, and
| | - Jonathan N Johnson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, and.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, and.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, and.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Donald J Hagler
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, and.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Theis JL, Hu JJ, Sundsbak RS, Evans JM, Bamlet WR, Qureshi MY, O'Leary PW, Olson TM. Genetic Association Between Hypoplastic Left Heart Syndrome and Cardiomyopathies. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 14:e003126. [PMID: 33325730 DOI: 10.1161/circgen.120.003126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) with risk of poor outcome has been linked to MYH6 variants, implicating overlap in genetic etiologies of structural and myopathic heart disease. METHODS Whole genome sequencing was performed in 197 probands with HLHS, 43 family members, and 813 controls. Data were filtered for rare, segregating variants in 3 index families comprised of an HLHS proband and relative(s) with cardiomyopathy. Whole genome sequencing data from cases and controls were compared for rare variant burden across 56 cardiomyopathy genes utilizing a weighted burden test approach, accounting for multiple testing using a Bonferroni correction. RESULTS A pathogenic MYBPC3 nonsense variant was identified in the first proband who underwent cardiac transplantation for diastolic heart failure, her father with left ventricular noncompaction, and 2 fourth-degree relatives with hypertrophic cardiomyopathy. A likely pathogenic RYR2 missense variant was identified in the second proband, a second-degree relative with aortic dilation, and a fourth-degree relative with dilated cardiomyopathy. A pathogenic RYR2 exon 3 in-frame deletion was identified in the third proband diagnosed with catecholaminergic polymorphic ventricular tachycardia and his father with left ventricular noncompaction and catecholaminergic polymorphic ventricular tachycardia. To further investigate HLHS-cardiomyopathy gene associations in cases versus controls, rare variant burden testing of 56 genes revealed enrichment in MYH6 (P=0.000068). Rare, predicted-damaging MYH6 variants were identified in 10% of probands in our cohort-4 with familial congenital heart disease, 4 with compound heterozygosity (3 with systolic ventricular dysfunction), and 4 with MYH6-FLNC synergistic heterozygosity. CONCLUSIONS Whole genome sequencing in multiplex families, proband-parent trios, and case-control cohorts revealed defects in cardiomyopathy-associated genes in patients with HLHS, which may portend impaired functional reserve of the single-ventricle circulation.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jessie J Hu
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Rhianna S Sundsbak
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., W.R.B.), Mayo Clinic, Rochester, MN
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., W.R.B.), Mayo Clinic, Rochester, MN
| | - M Yasir Qureshi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Patrick W O'Leary
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine (T.M.O.), Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Cloete E, Sadler L, Bloomfield FH, Crengle S, Percival T, Gentles TL. Congenital left heart obstruction: ethnic variation in incidence and infant survival. Arch Dis Child 2019; 104:857-862. [PMID: 30824490 DOI: 10.1136/archdischild-2018-315887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the relationship between ethnicity and health outcomes among fetuses and infants with congenital left heart obstruction (LHO). DESIGN A retrospective population-based review was conducted of fetuses and infants with LHO including all terminations, stillbirths and live births from 20 weeks' gestation in New Zealand over a 9-year period. Disease incidence and mortality were analysed by ethnicity and by disease type: hypoplastic left heart syndrome (HLHS), aortic arch obstruction (AAO), and aortic valve and supravalvular anomalies (AVSA). RESULTS Critical LHO was diagnosed in 243 fetuses and newborns. There were 125 with HLHS, 112 with AAO and 6 with isolated AVSA. The incidence of LHO was significantly higher among Europeans (0.59 per 1000) compared with Māori (0.31 per 1000; p<0.001) and Pacific peoples (0.27 per 1000; p=0.002). Terminations were uncommon among Māori and Pacific peoples. Total case fatality was, however, lower in Europeans compared with other ethnicities (42% vs 63%; p=0.002) due to a higher surgical intervention rate and better infant survival. The perinatal and infant mortality rate was 82% for HLHS, 15% for AAO and 2% for AVSA. CONCLUSION HLHS carries a high perinatal and infant mortality risk. There are ethnic differences in the incidence of and mortality from congenital LHO with differences in mortality rate suggesting inequities may exist in the perinatal management pathway.
Collapse
Affiliation(s)
- Elza Cloete
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Lynn Sadler
- Department of Obstetrics and Gynaecology, National Women's Hospital, Auckland, New Zealand
| | | | - Sue Crengle
- Department of Preventative and Social Medicine, University of Otago, Dunedin, New Zealand
| | | | - Thomas L Gentles
- Greenlane Paediatric and Congenital Cardiac Service, Starship Hospital, Auckland, New Zealand
| |
Collapse
|
11
|
Javed R, Cetta F, Said SM, Olson TM, O'Leary PW, Qureshi MY. Hypoplastic Left Heart Syndrome: An Overview for Primary Care Providers. Pediatr Rev 2019; 40:344-353. [PMID: 31263042 DOI: 10.1542/pir.2018-0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypoplastic left heart syndrome is one of the most complex congenital heart diseases and requires several cardiac surgeries for survival. The diagnosis is usually established prenatally or shortly after birth. Each stage of surgery poses a unique hemodynamic situation that requires deeper understanding to manage common pediatric problems such as dehydration and respiratory infections. Careful multidisciplinary involvement in the care of these complex patients is improving their outcome; however, morbidity and mortality are still substantial. In this review, we focus on the hemodynamic aspects of various surgical stages that a primary care provider should know to manage these challenging patients.
Collapse
Affiliation(s)
- Rabia Javed
- Wanek Family Program for Hypoplastic Left Heart Syndrome
| | - Frank Cetta
- Wanek Family Program for Hypoplastic Left Heart Syndrome.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine.,Department of Cardiovascular Medicine
| | - Sameh M Said
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Wanek Family Program for Hypoplastic Left Heart Syndrome.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine.,Department of Cardiovascular Medicine
| | - Patrick W O'Leary
- Wanek Family Program for Hypoplastic Left Heart Syndrome.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine.,Department of Cardiovascular Medicine
| | - Muhammad Yasir Qureshi
- Wanek Family Program for Hypoplastic Left Heart Syndrome.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine
| |
Collapse
|
12
|
Abstract
BACKGROUND Ebstein anomaly is a rare congenital heart defect (CHD) that, when severe, requires corrective surgery or other catheter-based intervention in the first year of life. Due to its rarity, risk factors for Ebstein anomaly remain largely unknown. Using national data, we examined 18 potential risk factors for Ebstein anomaly. METHODS Using 1997-2011 data from the National Birth Defects Prevention Study, a population-based case-control study, we calculated crude and adjusted odds ratios and 95% confidence intervals for paternal age, maternal socio-demographics, reproductive history, and modifiable risk factors, and infant characteristics reported by mothers of 135 Ebstein anomaly cases and 11,829 controls. RESULTS Mothers of Ebstein anomaly cases had 4.1 (95% confidence interval: 1.8, 9.5) times the odds of reporting a family history of CHD compared with mothers of controls. Ebstein anomaly was associated with maternal second-hand cigarette smoke exposure at home (odds ratio = 2.2 [95% confidence interval: 1.1, 4.4]), but not maternal cigarette smoking (odds ratio = 1.3 [95% confidence interval: 0.8, 2.1]). Odds were elevated, but the 95% confidence interval included 1.0, for maternal marijuana use (odds ratio = 1.8 [95% confidence interval: 0.9, 3.8]) and paternal age ≥40 years at delivery (odds ratio = 1.9 [95% confidence interval: 1.0, 3.5]). CONCLUSIONS Maternal exposure to second-hand cigarette smoke at home and a family history of CHD were associated with elevated odds of Ebstein anomaly. Genetic analyses could clarify the potential heritability of Ebstein anomaly.
Collapse
|
13
|
Shikany AR, Parrott A, James J, Madueme P, Nicole Weaver K, Cassidy C, Khoury PR, Miller EM. Left ventricular outflow tract obstruction: Uptake of familial cardiac screening and parental knowledge from a single tertiary care center. J Genet Couns 2019; 28:779-789. [PMID: 30907979 DOI: 10.1002/jgc4.1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/06/2022]
Abstract
Left ventricular outflow tract obstruction (LVOTO) malformations exhibit higher heritability than other cardiac lesions and cardiac screening is encouraged for first-degree relatives. This study sought to determine the uptake of familial cardiac screening in families with an infant with an LVOTO and assess parental knowledge regarding genetics and heritability of LVOTO. A chart review of the period 2010-2015 identified 69 families who received genetic counseling regarding a diagnosis of LVOTO in an infant. Surveys assessing familial cardiac screening and parental knowledge were completed by a parent in 24 families (completion rate of 35%). Forty percent (36/89) of all at-risk first-degree family members completed cardiac screening. The presence of additional congenital malformations in the affected infant was the only significant factor reducing the uptake of familial cardiac screening (p = 0.003). The reported uptake of screening for subsequent at-risk pregnancies was 11/12 (92%) compared to 25/77 (32%) of living at-risk relatives. Survey respondents answered seven knowledge questions with an average score of 5.2 and all correctly identified that LVOTO can run in families. Uptake of familial cardiac screening is occurring in less than half of at-risk individuals, despite parents demonstrating basic knowledge and receiving genetic counseling. Follow-up counseling in the outpatient setting to review familial screening recommendations should be considered to increase uptake and optimize outcomes.
Collapse
Affiliation(s)
- Amy R Shikany
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashley Parrott
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeanne James
- Division of Cardiology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Peace Madueme
- Nemours Cardiac Center, Nemours Children's Hospital, Orlando, Florida
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christine Cassidy
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip R Khoury
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erin M Miller
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
14
|
Grossfeld P, Nie S, Lin L, Wang L, Anderson RH. Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J Cardiovasc Dev Dis 2019; 6:jcdd6010010. [PMID: 30813450 PMCID: PMC6462956 DOI: 10.3390/jcdd6010010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoplastic left heart syndrome occurs in up to 3% of all infants born with congenital heart disease and is a leading cause of death in this population. Although there is strong evidence for a genetic component, a specific genetic cause is only known in a small subset of patients, consistent with a multifactorial etiology for the syndrome. There is controversy surrounding the mechanisms underlying the syndrome, which is likely due, in part, to the phenotypic variability of the disease. The most commonly held view is that the “decreased” growth of the left ventricle is due to a decreased flow during a critical period of ventricular development. Research has also been hindered by what has been, up until now, a lack of genetically engineered animal models that faithfully reproduce the human disease. There is a growing body of evidence, nonetheless, indicating that the hypoplasia of the left ventricle is due to a primary defect in ventricular development. In this review, we discuss the evidence demonstrating that, at least for a subset of cases, the chamber hypoplasia is the consequence of hyperplasia of the contained cardiomyocytes. In this regard, hypoplastic left heart syndrome could be viewed as a neonatal form of cardiomyopathy. We also discuss the role of the endocardium in the development of the ventricular hypoplasia, which may provide a mechanistic basis for how impaired flow to the developing ventricle leads to the anatomical changes seen in the syndrome.
Collapse
Affiliation(s)
- Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Shuyi Nie
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Robert H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
15
|
Familial Screening for Left-Sided Congenital Heart Disease: What Is the Evidence? What Is the Cost? Diseases 2017; 5:diseases5040029. [PMID: 29292713 PMCID: PMC5750540 DOI: 10.3390/diseases5040029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Since the American Heart Association’s recommendation for familial screening of adults with congenital heart disease for bicuspid aortic valve, similar recommendations for other left-sided heart defects, such as hypoplastic left heart syndrome (HLHS), have been proposed. However, defining at-risk populations for these heart defects based on genetics is less straightforward due to the wide variability of inheritance patterns and non-genetic influences such as environmental and lifestyle factors. We discuss whether there is sufficient evidence to standardize echocardiographic screening for first-degree relatives of children diagnosed with HLHS. Due to variations in the inclusion of cardiac anomalies linked to HLHS and the identification of asymptomatic individuals with cardiac malformations, published studies are open to interpretation. We conclude that familial aggregation of obstructive left-sided congenital heart lesions in families with history of HLHS is not supported and recommend that additional screening should adopt a more conservative definition of what truly constitutes this heart defect. More thorough consideration is needed before embracing familial screening recommendations of families of patients with HLHS, since this could inflict serious costs on healthcare infrastructure and further burden affected families both emotionally and financially.
Collapse
|
16
|
Lee MGY, d'Udekem Y. The Development of Left Ventricular Hypertrophy in Patients With Left-Sided Obstructive Lesions: Are Genetics at Play? Heart Lung Circ 2017; 27:1-2. [PMID: 29198831 DOI: 10.1016/j.hlc.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Melissa G Y Lee
- Department of Cardiac Surgery, The Royal Children's Hospital, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Yves d'Udekem
- Department of Cardiac Surgery, The Royal Children's Hospital, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Heart Research, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Vic, Australia.
| |
Collapse
|
17
|
Li AH, Hanchard NA, Furthner D, Fernbach S, Azamian M, Nicosia A, Rosenfeld J, Muzny D, D'Alessandro LCA, Morris S, Jhangiani S, Parekh DR, Franklin WJ, Lewin M, Towbin JA, Penny DJ, Fraser CD, Martin JF, Eng C, Lupski JR, Gibbs RA, Boerwinkle E, Belmont JW. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Med 2017; 9:95. [PMID: 29089047 PMCID: PMC5664429 DOI: 10.1186/s13073-017-0482-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Left-sided lesions (LSLs) account for an important fraction of severe congenital cardiovascular malformations (CVMs). The genetic contributions to LSLs are complex, and the mutations that cause these malformations span several diverse biological signaling pathways: TGFB, NOTCH, SHH, and more. Here, we use whole exome sequence data generated in 342 LSL cases to identify likely damaging variants in putative candidate CVM genes. METHODS Using a series of bioinformatics filters, we focused on genes harboring population-rare, putative loss-of-function (LOF), and predicted damaging variants in 1760 CVM candidate genes constructed a priori from the literature and model organism databases. Gene variants that were not observed in a comparably sequenced control dataset of 5492 samples without severe CVM were then subjected to targeted validation in cases and parents. Whole exome sequencing data from 4593 individuals referred for clinical sequencing were used to bolster evidence for the role of candidate genes in CVMs and LSLs. RESULTS Our analyses revealed 28 candidate variants in 27 genes, including 17 genes not previously associated with a human CVM disorder, and revealed diverse patterns of inheritance among LOF carriers, including 9 confirmed de novo variants in both novel and newly described human CVM candidate genes (ACVR1, JARID2, NR2F2, PLRG1, SMURF1) as well as established syndromic CVM genes (KMT2D, NF1, TBX20, ZEB2). We also identified two genes (DNAH5, OFD1) with evidence of recessive and hemizygous inheritance patterns, respectively. Within our clinical cohort, we also observed heterozygous LOF variants in JARID2 and SMAD1 in individuals with cardiac phenotypes, and collectively, carriers of LOF variants in our candidate genes had a four times higher odds of having CVM (odds ratio = 4.0, 95% confidence interval 2.5-6.5). CONCLUSIONS Our analytical strategy highlights the utility of bioinformatic resources, including human disease records and model organism phenotyping, in novel gene discovery for rare human disease. The results underscore the extensive genetic heterogeneity underlying non-syndromic LSLs, and posit potential novel candidate genes and complex modes of inheritance in this important group of birth defects.
Collapse
Affiliation(s)
- Alexander H Li
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Krankenhausstr. 26-30, 4020, Linz, Austria
| | - Susan Fernbach
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Annarita Nicosia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Shaine Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dhaval R Parekh
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wayne J Franklin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel J Penny
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, and the Texas Heart Institute, Houston, TX, USA
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,, 5200 Illumina Way, San Diego, CA, USA.
| |
Collapse
|
18
|
Crucean A, Alqahtani A, Barron DJ, Brawn WJ, Richardson RV, O'Sullivan J, Anderson RH, Henderson DJ, Chaudhry B. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis 2017; 12:138. [PMID: 28793912 PMCID: PMC5551014 DOI: 10.1186/s13023-017-0683-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Background Hypoplastic left heart syndrome (HLHS) covers a spectrum of rare congenital anomalies characterised by a non-apex forming left ventricle and stenosis/atresia of the mitral and aortic valves. Despite many studies, the causes of HLHS remain unclear and there are conflicting views regarding the role of flow, valvar or myocardial abnormalities in its pathogenesis, all of which were proposed prior to the description of the second heart field. Our aim was to re-evaluate the patterns of malformation in HLHS in relation to recognised cardiac progenitor populations, with a view to providing aetiologically useful sub-groupings for genomic studies. Results We examined 78 hearts previously classified as HLHS, with subtypes based on valve patency, and re-categorised them based on their objective ventricular phenotype. Three distinct subgroups could be identified: slit-like left ventricle (24%); miniaturised left ventricle (6%); and thickened left ventricle with endocardial fibroelastosis (EFE; 70%). Slit-like ventricles were always found in combination with aortic atresia and mitral atresia. Miniaturised left ventricles all had normally formed, though smaller aortic and mitral valves. The remaining group were found to have a range of aortic valve malformations associated with thickened left ventricular walls despite being described as either atresia or stenosis. The degree of myocardial thickening was not correlated to the degree of valvar stenosis. Lineage tracing in mice to investigate the progenitor populations that form the parts of the heart disrupted by HLHS showed that whereas Nkx2–5-Cre labelled myocardial and endothelial cells within the left and right ventricles, Mef2c-AHF-Cre, which labels second heart field-derived cells only, was largely restricted to the endocardium and myocardium of the right ventricle. However, like Nkx2–5-Cre, Mef2c-AHF-Cre lineage cells made a significant contribution to the aortic and mitral valves. In contrast, Wnt1-Cre made a major contribution only to the aortic valve. This suggests that discrete cardiac progenitors might be responsible for the patterns of defects observed in the distinct ventricular sub-groups. Conclusions Only the slit-like ventricle grouping was found to map to the current nomenclature: the combination of mitral atresia with aortic atresia. It appears that slit-like and miniature ventricles also form discrete sub-groups. Thus, reclassification of HLHS into subgroups based on ventricular phenotype, might be useful in genetic and developmental studies in investigating the aetiology of this severe malformation syndrome.
Collapse
Affiliation(s)
- A Crucean
- Department of Cardiac Surgery, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - A Alqahtani
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - D J Barron
- Department of Cardiac Surgery, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - W J Brawn
- Department of Cardiac Surgery, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - R V Richardson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - J O'Sullivan
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Department of Congenital Cardiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - R H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - D J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - B Chaudhry
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
19
|
|
20
|
Ito S, Chapman KA, Kisling M, John AS. Appropriate Use of Genetic Testing in Congenital Heart Disease Patients. Curr Cardiol Rep 2017; 19:24. [DOI: 10.1007/s11886-017-0834-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|