1
|
Cai R, Miao S, Cao X, Nie M, Zhao Y. Freeze-Derived Anisotropic Porous Microparticles for Engineered Mesenchymal Stem Cell Loading and Wound Healing. RESEARCH (WASHINGTON, D.C.) 2025; 8:0668. [PMID: 40264653 PMCID: PMC12012297 DOI: 10.34133/research.0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Hydrogel microparticles that can effectively deliver mesenchymal stem cells (MSCs) are expected to accelerate wound repair progress. Attempts in the area are focusing on improving the functions of the microparticles and MSCs to promote the therapeutic effect. Here, inspired by the topological morphology of ice branches, we propose novel freeze-derived anisotropic porous microparticles for hepatocyte growth factor (HGF)-overexpressing MSCs (MSCsHGF) loading and wound healing. The microparticles were fabricated by introducing microfluidic methacrylated gelatin pre-gel droplets into low-temperature silicone oil, followed by photo-cross-linking and freeze-drying processes. Drawing an advantage from the biocompatible chemical composition and the structured pore arrangement of the microparticles, MSCsHGF can be efficiently encapsulated and released, maintaining continuous HGF secretion to enhance cell migration and support vascular regeneration. Leveraging these characteristics, we have shown that MSCsHGF-loaded porous microparticles could substantially promote angiogenesis, polarize macrophages toward the M2 phenotype, and reduce inflammation during the wound repair process, consequently enhancing skin wound repair efficiency. Thus, we believe that our MSCsHGF-integrated freeze-derived anisotropic porous microparticles hold promising prospects for clinical wound-healing applications.
Collapse
Affiliation(s)
- Rongwei Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Shuangshuang Miao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Min Nie
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, AlQaseem 52736, Saudi Arabia.
| |
Collapse
|
3
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
4
|
Lin YK, Hsiao LC, Wu MY, Chen YF, Lin YN, Chang CM, Chung WH, Chen KW, Lu CR, Chen WY, Chang SS, Shyu WC, Lee AS, Chen CH, Jeng LB, Chang KC. PD-L1 and AKT Overexpressing Adipose-Derived Mesenchymal Stem Cells Enhance Myocardial Protection by Upregulating CD25 + T Cells in Acute Myocardial Infarction Rat Model. Int J Mol Sci 2023; 25:134. [PMID: 38203304 PMCID: PMC10779305 DOI: 10.3390/ijms25010134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the synergistic impact of Programmed Death Ligand 1 (PD-L1) and Protein Kinase B (Akt) overexpression in adipose-derived mesenchymal stem cells (AdMSCs) for ameliorating cardiac dysfunction after myocardial infarction (MI). Post-MI adult Wistar rats were allocated into four groups: sham, MI, ADMSC treatment, and ADMSCs overexpressed with PD-L1 and Akt (AdMSC-PDL1-Akt) treatment. MI was induced via left anterior descending coronary artery ligation, followed by intramyocardial AdMSC injections. Over four weeks, cardiac functionality and structural integrity were assessed using pressure-volume analysis, infarct size measurement, and immunohistochemistry. AdMSC-PDL1-Akt exhibited enhanced resistance to reactive oxygen species (ROS) in vitro and ameliorated MI-induced contractile dysfunction in vivo by improving the end-systolic pressure-volume relationship and preload-recruitable stroke work, together with attenuating infarct size. Molecular analyses revealed substantial mitigation in caspase3 and nuclear factor-κB upregulation in MI hearts within the AdMSC-PDL1-Akt group. Mechanistically, AdMSC-PDL1-Akt fostered the differentiation of normal T cells into CD25+ regulatory T cells in vitro, aligning with in vivo upregulation of CD25 in AdMSC-PDL1-Akt-treated rats. Collectively, PD-L1 and Akt overexpression in AdMSCs bolsters resistance to ROS-mediated apoptosis in vitro and enhances myocardial protective efficacy against MI-induced dysfunction, potentially via T-cell modulation, underscoring a promising therapeutic strategy for myocardial ischemic injuries.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 404327, Taiwan; (C.-M.C.); (A.-S.L.)
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Lien-Cheng Hsiao
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 404327, Taiwan; (C.-M.C.); (A.-S.L.)
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yun-Fang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; (Y.-F.C.); (W.-Y.C.)
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chia-Ming Chang
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 404327, Taiwan; (C.-M.C.); (A.-S.L.)
| | - Wei-Hsin Chung
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
| | - Ke-Wei Chen
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
| | - Chiung-Ray Lu
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
| | - Wei-Yu Chen
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; (Y.-F.C.); (W.-Y.C.)
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Woei-Cheang Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan
- Neuroscience and Brain Disease Center, New Drug Development Center, China Medical University, Taichung 404328, Taiwan
- Department of Neurology, China Medical University, Taichung 404328, Taiwan
- Department of Occupational Therapy, Asia University, Taichung 413305, Taiwan
| | - An-Sheng Lee
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 404327, Taiwan; (C.-M.C.); (A.-S.L.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; (Y.-F.C.); (W.-Y.C.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
- New York Heart Research Foundation, Mineola, NY 11514, USA
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung 404327, Taiwan;
- Organ Transplantation Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung 404327, Taiwan (Y.-N.L.); (W.-H.C.); (K.-W.C.)
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung 404327, Taiwan; (C.-M.C.); (A.-S.L.)
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
5
|
Perez-Estenaga I, Chevalier MT, Peña E, Abizanda G, Alsharabasy AM, Larequi E, Cilla M, Perez MM, Gurtubay J, Garcia-Yebenes Castro M, Prosper F, Pandit A, Pelacho B. A Multimodal Scaffold for SDF1 Delivery Improves Cardiac Function in a Rat Subacute Myocardial Infarct Model. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50638-50651. [PMID: 37566441 PMCID: PMC10636708 DOI: 10.1021/acsami.3c04245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Ischemic heart disease is one of the leading causes of death worldwide. The efficient delivery of therapeutic growth factors could counteract the adverse prognosis of post-myocardial infarction (post-MI). In this study, a collagen hydrogel that is able to load and appropriately deliver pro-angiogenic stromal cell-derived factor 1 (SDF1) was physically coupled with a compact collagen membrane in order to provide the suture strength required for surgical implantation. This bilayer collagen-on-collagen scaffold (bCS) showed the suitable physicochemical properties that are needed for efficient implantation, and the scaffold was able to deliver therapeutic growth factors after MI. In vitro collagen matrix biodegradation led to a sustained SDF1 release and a lack of cytotoxicity in the relevant cell cultures. In vivo intervention in a rat subacute MI model resulted in the full integration of the scaffold into the heart after implantation and biocompatibility with the tissue, with a prevalence of anti-inflammatory and pro-angiogenic macrophages, as well as evidence of revascularization and improved cardiac function after 60 days. Moreover, the beneficial effect of the released SDF1 on heart remodeling was confirmed by a significant reduction in cardiac tissue stiffness. Our findings demonstrate that this multimodal scaffold is a desirable matrix that can be used as a drug delivery system and a scaffolding material to promote functional recovery after MI.
Collapse
Affiliation(s)
- Iñigo Perez-Estenaga
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Merari Tumin Chevalier
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Estefania Peña
- Aragon
Institute of Engineering Research, University
of Zaragoza, Zaragoza 50009, Spain
- CIBER-BBN—Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Gloria Abizanda
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
| | - Amir M. Alsharabasy
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Eduardo Larequi
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Myriam Cilla
- Aragon
Institute of Engineering Research, University
of Zaragoza, Zaragoza 50009, Spain
- CIBER-BBN—Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Marta M. Perez
- Department
of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Zaragoza 50009, Spain
| | - Jon Gurtubay
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | | | - Felipe Prosper
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
- Department
of Cell Therapy and Hematology, Clínica
Universidad de Navarra, Pamplona 31008, Spain
- CIBERONC, Madrid 28029, Spain
| | - Abhay Pandit
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Beatriz Pelacho
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
| |
Collapse
|
6
|
Motahari R, Boshagh MA, Moghimi S, Peytam F, Hasanvand Z, Oghabi Bakhshaiesh T, Foroumadi R, Bijanzadeh H, Firoozpour L, Khalaj A, Esmaeili R, Foroumadi A. Design, synthesis and evaluation of novel tetrahydropyridothienopyrimidin-ureas as cytotoxic and anti-angiogenic agents. Sci Rep 2022; 12:9683. [PMID: 35690595 PMCID: PMC9188586 DOI: 10.1038/s41598-022-13515-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
The novel derivatives of tetrahydropyridothienopyrimidine-based compounds have been designed and efficiently synthesized with good yields through seven steps reaction. The anticancer activity of compounds 11a-y has been evaluated against MCF-7, PC-3, HEPG-2, SW-480, and HUVEC cell lines by MTT assay. The target compounds showed IC50 values between 2.81–29.6 μg/mL and were compared with sorafenib as a reference drug. Among them, compound 11n showed high cytotoxic activity against four out of five examined cell lines and was 14 times more selective against MRC5. The flow cytometric analysis confirmed the induction of apoptotic cell death by this compound against HUVEC and MCF-7 cells. In addition, 11n caused sub-G1 phase arrest in the cell cycle arrest. Besides, this compound induced anti-angiogenesis in CAM assay and increased the level of caspase-3 by 5.2 fold. The western-blot analysis of the most active compound, 11n, revealed the inhibition of VEGFR-2 phosphorylation. Molecular docking study also showed the important interactions for compound 11n.
Collapse
Affiliation(s)
- Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Boshagh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Matta A, Nader V, Lebrin M, Gross F, Prats AC, Cussac D, Galinier M, Roncalli J. Pre-Conditioning Methods and Novel Approaches with Mesenchymal Stem Cells Therapy in Cardiovascular Disease. Cells 2022; 11:1620. [PMID: 35626657 PMCID: PMC9140025 DOI: 10.3390/cells11101620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) in the setting of cardiovascular disease, such as heart failure, cardiomyopathy and ischemic heart disease, has been associated with good clinical outcomes in several trials. A reduction in left ventricular remodeling, myocardial fibrosis and scar size, an improvement in endothelial dysfunction and prolonged cardiomyocytes survival were reported. The regenerative capacity, in addition to the pro-angiogenic, anti-apoptotic and anti-inflammatory effects represent the main target properties of these cells. Herein, we review the different preconditioning methods of MSCs (hypoxia, chemical and pharmacological agents) and the novel approaches (genetically modified MSCs, MSC-derived exosomes and engineered cardiac patches) suggested to optimize the efficacy of MSC therapy.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Medicine, Holy Spirit University of Kaslik, Kaslik 446, Lebanon
- Department of Cardiology, Intercommunal Hospital Centre Castres-Mazamet, 81100 Castres, France
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Pharmacy, Lebanese University, Beirut 6573/14, Lebanon
| | - Marine Lebrin
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | - Fabian Gross
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | | | - Daniel Cussac
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| | - Michel Galinier
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| |
Collapse
|
8
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
9
|
Wang W, Wang Y, Hu J, Duan H, Wang Z, Yin L, He F. Untargeted Metabolomics Reveal the Protective Effect of Bone Marrow Mesenchymal Stem Cell Transplantation Against Ovariectomy-Induced Osteoporosis in Mice. Cell Transplant 2022; 31:9636897221079745. [PMID: 35225020 PMCID: PMC8891838 DOI: 10.1177/09636897221079745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow mesenchymal stem cell transplantation (BMSCT) is a potential treatment for osteoporosis, capable of contributing to bone tissue repair. BMSCT has demonstrated osteoinductive effects and the ability to regulate microenvironmental metabolism; however, its role and mechanisms in bone loss due to reduced estrogen levels remain unclear. In this study, the effect of BMSCT on ovariectomy (OVX)-induced osteoporosis in mice was assessed, and liquid chromatography–mass spectrometry (LC-MS) metabolomic studies of bone tissue were conducted to identify potential metabolic molecular markers. The results revealed that BMSCT reduces OVX-induced bone loss in mice while improving the mechanical properties of mouse femurs and increasing the expression of osteogenic markers in peripheral blood. In a metabolomic study, 18 metabolites were screened as potential biomarkers of the anti-osteoporotic effect of BMSCT. These metabolites are mainly involved in arachidonic acid metabolism, taurine and hypotaurine metabolism, and pentose and glucuronate interconversions. Collectively, these results illustrate the correlation between metabolites and the underlying mechanisms of osteoporosis development and are important for understanding the role and mechanisms of exogenous bone marrow mesenchymal stem cells (BMSCs) in osteoporosis management. This study lays the foundation for research on BMSCs as a treatment strategy for osteoporosis.
Collapse
Affiliation(s)
- Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanghao Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Hu
- Kunming First People’s Hospital, Kunming, China
| | - Hao Duan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhihua Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Yin
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fei He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Stem Cell Technology Application Research Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Provincial Clinical Medical Center for Bone and Joint Diseases, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
11
|
The Effect of Inflammatory Priming on the Therapeutic Potential of Mesenchymal Stromal Cells for Spinal Cord Repair. Cells 2021; 10:cells10061316. [PMID: 34070547 PMCID: PMC8227154 DOI: 10.3390/cells10061316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media. Priming MSC with inflammatory stimuli increases the expression and secretion of reparative molecules. We studied the effect of macrophage-derived inflammation priming on MSC transplants and of primed MSC (pMSC) acute transplants (3 days) on spinal cord repair using an adult rat model of moderate-severe contusive SCI. We found a decrease in long-term survival of pMSC transplants compared with unprimed MSC transplants. With a pMSC transplant, we found significantly more anti-inflammatory macrophages in the contusion at 4 weeks post transplantation (wpt). Blood vessel presence and maturation in the contusion at 1 wpt was similar in rats that received pMSC or untreated MSC. Nervous tissue sparing and functional recovery were similar across groups. Our results indicate that macrophage-derived inflammation priming does not increase the overall therapeutic potential of an MSC transplant in the adult rat contused spinal cord.
Collapse
|