1
|
Hu S, Gao X, Zhu Y, Shi F, Huang L. PMEPA1 Binds NEDD4L to Inhibit the Malignant Progression of Multiple Myeloma by Inactivating Wnt/β-Catenin Signaling. Cell Biochem Biophys 2025:10.1007/s12013-025-01674-w. [PMID: 40035958 DOI: 10.1007/s12013-025-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy with increasing prevalence. Prostate transmembrane androgen inducible protein 1 (PMEPA1) is positively associated with overall survival in MM patients, but the exact functions and mechanisms of PMEPA1 in MM have yet to be elucidated. PMEPA1 and neural precursor cell-expressed developmentally downregulated gene 4L (NEDD4L) levels in MM cells were examined. In RPMI-8226 cells with PMEPA1 overexpression or/and NEDD4L knockdown, cell proliferation, cycle distribution and apoptosis were evaluated with the application of CCK-8, EDU staining and flow cytometry. The BioGrid website and HDOCK SERVER were applied for predicting the binding between PMEPA1 and NEDD4L, which was checked by co-immunoprecipitation. Besides, the levels of proteins associated with proliferation (Ki67 and PCNA), apoptosis (Bcl-2, Bax and cleaved caspase3) and Wnt/β-catenin signaling (β-catenin, c-Myc and cyclin D1) was detected with immunoblotting. Finally, LiCl, an activator of Wnt/β-catenin pathway, was employed to treat RPMI-8226 cells to analyze the proliferation, cycle distribution and apoptosis of MM cells. As a result, PMEPA1 and NEDD4L were expressed at low levels in MM cells. PMEPA1 upregulation repressed proliferation induced cycle arrest and facilitated apoptosis of MM cells. Moreover, PMEPA1 bound to NEDD4L and upregulated NEDD4L expression in RPMI-8226 cells. Functionally, NEDD4L knockdown attenuated the influences of PMEPA1 overexpression on the proliferation, cycle distribution and apoptosis of RPMI-8226 cells. Additionally, PMEPA1 notably downregulated β-catenin, c-Myc and cyclin D1 expression in RPMI-8226 cells, which was abrogated by NEDD4L silencing. Further adding LiCl in RPMI-8226 cells led to the enhanced malignant biological behaviors. Collectively, PMEPA1 damaged MM progression through binding NEDD4L to inactivate Wnt/β-catenin signaling, which may be helpful to develop promising targets for MM treatment.
Collapse
Affiliation(s)
- Shanshan Hu
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Xinfang Gao
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Yan Zhu
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Fangjing Shi
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Li Huang
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China.
| |
Collapse
|
2
|
Huang H, Sun R, Xu Y, Liu R, Chen Z. PMEPA1 promotes gastric cancer cell proliferation by regulating the ubiquitin-mediated degradation of 14-3-3σ and promoting cell cycle progression. Braz J Med Biol Res 2024; 57:e13985. [PMID: 39607204 DOI: 10.1590/1414-431x2024e13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC) remains a global health challenge due to its heterogeneity and diverse regional epidemiology. Treatment for advanced GC often requires chemotherapy, whose effects are closely associated with the cell cycle. This association highlights the critical need to understand cell cycle regulators that can influence the effectiveness of chemotherapy. Bioinformatics analyses were performed on transcriptome data from a hospital cohort and on a publicly available database. Flow cytometry was used for cell cycle analysis. The interaction of PMEPA1 with 14-3-3σ was confirmed by coimmunoprecipitation and immunofluorescence staining. Western blot analysis was performed following inhibition of protein synthesis and degradation to assess 14-3-3σ protein stability, while ubiquitination was evaluated after treatment with the proteasome inhibitor MG132. High PMEPA1 expression was detected in GC tissues and was correlated with poor prognosis. In vitro overexpression of PMEPA1 promoted GC cell proliferation, while knockdown of PMEPA1 inhibited cell proliferation and induced G2/M arrest. In vivo study showed that overexpressing PMEPA1 promoted tumor growth, while knocking down PMEPA1 inhibited tumor growth, as indicated by the level of the proliferation marker Ki67. 14-3-3σ was identified as a downstream target of PMEPA1. PMEPA1 binds to 14-3-3σ and promoted its degradation by facilitating its ubiquitination. Overexpression of PMEPA1 increased its interactions with TTC3 and 14-3-3σ, increased 14-3-3σ ubiquitination, and reduced 14-3-3σ stability, and the opposite effects were observed after PMEPA1 knockdown. PMEPA1 recruited TTC3, allowing the ubiquitination of 14-3-3σ and leading to its degradation, thus promoting cell cycle progression in GC.
Collapse
Affiliation(s)
- Heyuan Huang
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Sun
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Xu
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renchao Liu
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihua Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
4
|
Zhu Q, Wang Y, Liu Y, Yang X, Shuai Z. Prostate transmembrane androgen inducible protein 1 (PMEPA1): regulation and clinical implications. Front Oncol 2023; 13:1298660. [PMID: 38173834 PMCID: PMC10761476 DOI: 10.3389/fonc.2023.1298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Prostate transmembrane androgen inducible protein 1 (PMEPA1) can promote or inhibit prostate cancer cell growth based on the cancer cell response to the androgen receptor (AR). Further, it can be upregulated by transforming growth factor (TGF), which downregulates transforming growth factor-β (TGF-β) signaling by interfering with R-Smad phosphorylation to facilitate TGF-β receptor degradation. Studies have indicated the increased expression of PMEPA1 in some solid tumors and its functioning as a regulator of multiple signaling pathways. This review highlights the multiple potential signaling pathways associated with PMEPA1 and the role of the PMEPA1 gene in regulating prognosis, including transcriptional regulation and epithelial mesenchymal transition (EMT). Moreover, the relevant implications in and outside tumors, for example, as a biomarker and its potential functions in lysosomes have also been discussed.
Collapse
Affiliation(s)
- Qicui Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaqian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| |
Collapse
|
5
|
Wen F, Yang S, Cai W, Zhao M, Qin L, Jiao Z. Exploring the role of PMEPA1 in gastric cancer. Mol Cell Probes 2023; 72:101931. [PMID: 37683830 DOI: 10.1016/j.mcp.2023.101931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Although there are several treatments available for gastric cancer (GC), the prognosis of the disease is still poor due to many factors, such as late diagnosis and tumor heterogeneity. To identify potential therapeutic targets, bioinformatics techniques and clinical sample validation were employed and prostate transmembrane protein androgen induced 1 (PMEPA1) was selected for further study. In the present study, we found that elevated PMEPA1 expression correlates with a worse prognosis and weaker anti-tumor immunity in GC patients. Moreover, our study showed that PMEPA1 not only influences cell proliferation, clone formation, invasion, and migration in vitro, but also plays an important role in GC progression in vivo. Mechanically, PMEPA1 exerts its oncogenic effects through activating the Wnt/β-catenin signaling pathway. Therefore, PMEPA1 is a potential target for treating GC effectively.
Collapse
Affiliation(s)
- Fei Wen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Shangyu Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - WeiWen Cai
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Mengyuan Zhao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
6
|
Li M, Shi X, Wu Y, Qi B, Zhang C, Wang B, Zhang B, Xu Y. Pmepa1 knockdown alleviates SpA-induced pyroptosis and osteogenic differentiation inhibition of hBMSCs via p38MAPK/NLRP3 axis. Int Immunopharmacol 2023; 124:110843. [PMID: 37634444 DOI: 10.1016/j.intimp.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Osteomyelitis is a refractory bone infectious disease, which usually results in progressive bone destruction and bone loss. The invasion of pathogens and subsequent inflammatory response could damage bone marrow mesenchymal stem cells (BMSCs) and inhibit osteogenic differentiation, and finally aggravate uncontrolled bone remodeling in osteomyelitis by affecting bone formation. Exploring the mechanisms of BMSCs injury and osteogenic differentiation inhibition may would help us to find potential therapeutic targets. METHOD Firstly, staphylococcal protein A (SpA)-treated human bone marrow mesenchymal stem cells (hBMSCs) were used to construct cell models of osteomyelitis. Secondly, transcriptome sequencing was performed to screen differentially expressed genes and then verified the expression of target genes. Next, in vitro experiments were conducted to explore the functions and mechanisms of prostate transmembrane protein androgen induced 1 (Pmepa1) in SpA-treated hBMSCs. Finally, the rat model of osteomyelitis was established to provide an auxiliary validation of the in vitro experimental results. RESULTS We found that SpA treatment induced inflammatory injury and inhibited osteogenic differentiation in hBMSCs, then the transcriptome sequencing and further detection results showed that Pmepa1 was significantly upregulated in this process. Functionally, Pmepa1 knockdown alleviated inflammatory injury and promoted osteogenic differentiation in SpA-treated hBMSCs. Among them, it was demonstrated that Pmepa1 knockdown exerted cytoprotective effects by alleviating pyroptosis of SpA-infected hBMSCs. Furthermore, recovery experiments revealed that Pmepa1 knockdown reversed SpA-mediated adverse effects by downregulating the p38MAPK/NLRP3 axis. Finally, the detection results of rat femoral osteomyelitis showed that the expression of Pmepa1 was up-regulated, and the expression trends of other indicators including p38MAPK, NLRP3, and caspase-1 were also consistent with the in vitro model. CONCLUSION Pmepa1 knockdown alleviates SpA-induced pyroptosis and inhibition of osteogenic differentiation in hBMSCs by downregulating p38MAPK/NLRP3 signaling axis. Modulating the expression of Pmepa1 may be a potential strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Mingjun Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangwen Shi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Baochuang Qi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chaoqun Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bin Wang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bihuan Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
7
|
Fan Q, Lu Q, Wang G, Zhu W, Teng L, Chen W, Bi L. Optimizing component formula suppresses lung cancer by blocking DTL-mediated PDCD4 ubiquitination to regulate the MAPK/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115546. [PMID: 35850313 DOI: 10.1016/j.jep.2022.115546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge and Panax ginseng C. A. Meyer have special curative effect on cancer treatment. The optimizing component formula (OCF) extracted from those two herbs was in line with the anti-lung cancer treatment principle of activating blood and supplementing 'Qi'. However, the study on the mechanism of component formula has always been an insurmountable challenge. Nowadays, the application of network pharmacology and artificial intelligence (AI) in the field of TCM provides new ideas for the study of new targets and mechanisms of TCM, which promotes the modernization of TCM. AIM OF THE STUDY This study aims to further explore the anti-lung cancer mechanism of OCF by using an integrated strategy of network pharmacology and AI technology. MATERIALS AND METHODS Bioinformatic analysis was used to analyze the expression levels, prognosis and survival of DTL and PDCD4 in cancer patients. The binding strength of OCF and DTL was simulated by molecular docking, and the affinity between them was detected by Bio-layer interferometry. Network pharmacology was used to predict the active components, potential targets and pathways of OCF. The association between key targets and their corresponding components and DTL was analyzed by Ingenuity Pathway Analysis (IPA). MTT assay, colony formation assay, wound-healing assay and transwell assay were used to verify the inhibitory effects of OCF on lung cancer cells in vitro. qRT-PCR and Western blot assay were used to detect the effects of OCF on mRNA and protein expression of DTL, PDCD4 and key genes in MAPK/JNK pathways. RESULTS Bioinformatics analysis showed that DTL was significantly up-regulated in lung cancer, which was associated with high malignancy rate, high metastasis rate and poor prognosis of primary tumor. PDCD4 was down-regulated in lung cancer, and associated with high metastasis rate and poor prognosis. The good affinity between OCF and DTL was predicted and verified by molecular docking and Bio-layer interferometry. Based on the network pharmacological databases, 40 active components and 220 corresponding targets of OCF were screened out. KEGG analysis showed that OCF component targets were mainly enriched in MAPK signaling pathway. IPA results showed the interrelationship between DTL, PDCD4, MAPK pathway genes and their corresponding OCF components. In addition, in vitro experiments demonstrated anti-lung cancer activity of OCF, as validated, via impairing cell viability and cell proliferation, as well as inhibiting migration and invasion abilities in lung cancer cells. qRT-PCR showed that OCF down-regulated the mRNA expression of DTL, MAP4K1, JNK, c-Jun and c-Myc, and up-regulated the mRNA expression of PDCD4 and P53 genes in A549 lung cancer cells. Western blot suggested that OCF suppressed the protein level of DTL and blocked the ubiquitination of PDCD4 in A549 lung cancer cells, and down-regulated the protein levels of MAP4K1, p-JNK and p-c-Jun while up-regulated the proteins expression level of P53. CONCLUSIONS OCF might elicit an anti-lung cancer effect by blocking DTL-mediated PDCD4 ubiquitination and suppression of the MAPK/JNK pathway. Meanwhile, our work revealed that network pharmacology and AI technology strategy are cogent means of studying the active components and mechanism of TCM.
Collapse
Affiliation(s)
- Qianqian Fan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinwei Lu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guiyang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjing Zhu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxin Teng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiping Chen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
PMEPA1 Serves as a Prognostic Biomarker and Correlates with Immune Infiltrates in Cervical Cancer. J Immunol Res 2022; 2022:4510462. [PMID: 35497877 PMCID: PMC9045981 DOI: 10.1155/2022/4510462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging studies have demonstrated that Prostate transmembrane protein androgen induced 1 (PMEPA1) plays crucial roles in the carcinogenesis of many developing human tumors. However, the clinical significance of PMEPA1 expression in cervical cancer (CC) and its contribution to cancer immunity have not been investigated. In this study, we identified PMEPA1 as a survival-related gene in CC based on TCGA datasets. Univariate and multivariate analysis showed that PMEPA1 expression was an independent predictor for overall survival in CC patients. We could observe a strong negative correlation between PMEPA1 expression and PMEPA1 methylation. Two CpG sites of PMEPA1 were associated with overall survival, and one CpG site of PMEPA1 was associated with progression-free survival. The low level of PMEPA1 methylation was associated with advanced clinical stage of CC patients. KEGG assays revealed the genes associated with PMEPA1 expression were mainly enriched in several tumor-related pathways. Increased PMEPA1 expressions were observed to be positively related to high immune infiltration levels in several immune cells. Finally, the pan-cancer assays revealed that PMEPA1 expression was associated with the overall survival of UVM, PAAD, LUSC, BLCA, CESC, and LUAD. Taken together, PMEPA1 is a prognosis-related biomarker for multiple cancer types, especially CC. PMEPA1 is involved in tumor immunity, suggesting PMEPA1 may be a potential immunotherapeutic target in CC.
Collapse
|