1
|
Zou P, Li S, He Q, Zheng C. Berberine inhibits prostate cancer progression by inducing ferroptosis: evidence from network pharmacology. Anticancer Drugs 2025; 36:271-279. [PMID: 39808208 DOI: 10.1097/cad.0000000000001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1 , CDK1 , AURKA , AR , CDC42 , ICAM1 , TYMS , NTRK1 , PTGS 2, and SCD , were identified. Enrichment analyses yielded 799 Gene Ontology terms and 23 Kyoto Encyclopedia of Genes and Genomes pathways associated with berberine-related targets. Molecular docking simulations indicated berberine's binding capacity to all hub genes. In-vitro studies on LNCaP and PC3 cells demonstrated berberine's inhibition of cell proliferation and significant downregulation of TYMS , CCNB1 , AURKA , CDK1 , and SCD in both cell lines. Berberine exhibited cell line-specific effects by reducing AR expression in LNCaP cells and suppressing ICAM1 in PC3 cells. Overall, berberine shows promise in inhibiting prostate cancer progression through modulation of ferroptosis-related genes, including TYMS , AR , CCNB1 , AURKA , CDK1 , ICAM1 , NTRK1 , SCD , and CDC42 .
Collapse
Affiliation(s)
- Peiliang Zou
- School of Clinical Medicine, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | | | | | | |
Collapse
|
2
|
Zhao Y, Yu B, Wang Y, Tan S, Xu Q, Wang Z, Zhou K, Liu H, Ren Z, Jiang Z. Ang-1 and VEGF: central regulators of angiogenesis. Mol Cell Biochem 2025; 480:621-637. [PMID: 38652215 DOI: 10.1007/s11010-024-05010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-β-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Bo Yu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yanxia Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Shiming Tan
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Qian Xu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhaoyue Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Huiting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Ranjbarnejad T, Gholaminejad A, Abolhassani H, Sherkat R, Salehi M, Sharifi M. Decreased expression of hsa-miR-142-3p and hsa-miR-155-5p in common variable immunodeficiency and involvement of their target genes and biological pathways. Allergol Immunopathol (Madr) 2025; 53:153-169. [PMID: 39786889 DOI: 10.15586/aei.v53i1.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients. MiR-142 and miR-155 were identified as immune system modulators and dysregulated in autoimmune and inflammatory diseases. We assessed hsa-miR-142-3p and hsa-miR-155-5p expression in a selected cohort of unresolved CVID cases and identified experimentally validated targets of these miRNAs. We constructed a protein-protein interaction (PPI) network from the common targets of two miRNAs and determined the hub genes. The hub genes' expression was investigated in GEO datasets. Gene ontology (GO) and pathway enrichment analysis were done for target genes. Hsa-miR-142-3p and hsa-miR-155-5p expression were significantly reduced in CVID patients. Evaluation of the PPI network demonstrated some hub genes in which pathogenic mutations have been reported in IEI, and other hub genes directly contribute to immune responses and the pathophysiology of IEI. Expression analysis of hub genes showed that they were significantly dysregulated in validating the CVID cohort. The pathway enrichment analysis indicated the involvement of the FOXO-mediated signaling pathway, TGFβ receptor complex, and VEGFR2-mediated vascular permeability. Considering the dysregulation of hsa-miR-142-3p and hsa-miR-155-5p in CVID and the known role of their target genes in the immune system, their involvement in the pathogenesis of CVID can be suggested.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| |
Collapse
|
4
|
Ibrahim H, Sharawy MH, Hamed MF, Abu-Elsaad N. Peficitinib halts acute kidney injury via JAK/STAT3 and growth factors immunomodulation. Eur J Pharmacol 2024; 984:177020. [PMID: 39349115 DOI: 10.1016/j.ejphar.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Acute Kidney Injury (AKI) is characterized by a sudden loss of kidney function and its management continues to be a challenge. In this study the effect of peficitinib, a Janus kinase inhibitor (JAKi), was studied in an aim to stop the progression of AKI at an early point of injury. Adult male mice were injected with aristolochic acid (AA) a single dose (10 mg/kg, i.p) to induce AKI. Peficitinib was injected in one of the two tested doses (5 or 10 mg/kg, i.p) 1 h after AA injection and was continued daily for seven days. Histopathological evaluation showed that peficitinib alleviated necrosis and hyaline cast formation induced by aristolochic acid. It decreased serum creatinine and the kidney injury molecule-1 (KIM-1) elevated by AA. Peficitinib also mitigated AA induced oxidative stress through regulating total antioxidant capacity (TAC) and reduced glutathione (GSH) level in renal tissue. Additionally, renal sections isolated from groups that received peficitinib revealed a decrease in vascular endothelial growth factor receptor 1 interstitial expression and transforming growth factor-beta 1 (TGF-β1) renal level. Peficitinib received groups showed a decrease in the active phosphorylated form of signal transducers and activators of transcription (STAT3). Moreover, peficitinib decreased renal protein levels and gene expression of the pro-inflammatory cytokines; interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ). These findings suggest that peficitinib is helpful in halting AKI progression into chronic kidney disease through modulating JAK/STAT3 dependent inflammatory pathways and growth factors involved in normal glomerular function.
Collapse
Affiliation(s)
- Hassnaa Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt; Pharmacist at Urology and Nephrology Center, Mansoura University, Mansoura, 33516, Egypt
| | - Maha H Sharawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt.
| | - Mohamed F Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 33516, Egypt
| | - Nashwa Abu-Elsaad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt
| |
Collapse
|
5
|
Wang C, Zhou C, Wang D, Zhang YF, Lv HX, He H, Ren YQ, Wang J, Zhou FH. Proangiogenic potential of plasma exosomes from prostate cancer patients. Cell Signal 2024; 124:111398. [PMID: 39265728 DOI: 10.1016/j.cellsig.2024.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Angiogenesis plays a pivotal role in the progression and metastasis of solid cancers, including prostate cancer (PCa). While small extracellular vesicles derived from PCa cell lines induce a proangiogenic phenotype in vascular endothelial cells, the contribution of plasma exosomes from patients with PCa to this process remains unclear. Here, we successfully extracted and characterized plasma exosomes. Notably, a ring of PKH67-labeled exosomes was observed around the HUVEC nucleus using fluorescence microscopy, indicating the uptake of exosomes by HUVEC. At the cellular level, PCa plasma exosomes enhanced angiogenesis, proliferation, invasion, and migration of HUVEC cells. Moreover, PCa plasma exosomes promoted angiogenesis and aortic sprouting. MicroRNAs are the most common genetic material in exosomes, and to identify miRNAs associated with the angiogenic response, we performed small RNA sequencing followed by RT-qPCR and bioinformatics analysis. These analyses revealed distinct miRNA profiles in plasma exosomes from patients with PCa compared to healthy individuals. Notably, hsa-miR-184 emerged as a potential regulator implicated in the proangiogenic effects of PCa plasma exosomes.
Collapse
Affiliation(s)
- Chao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Han He
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Yong-Qi Ren
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China; Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
6
|
Shi SS, Hu T. Network pharmacology study on fermented soybeans for the prevention of Alzheimer's disease in older individuals. Biomed Chromatogr 2024; 38:e5921. [PMID: 38886007 DOI: 10.1002/bmc.5921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.
Collapse
Affiliation(s)
- Shuo-Shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Yarjoo S, Siampour H, Khalilipour M, Sajedi RH, Bagheri H, Moshaii A. Gold nanostructure-enhanced immunosensing: ultra-sensitive detection of VEGF tumor marker for early disease diagnosis. Sci Rep 2024; 14:10450. [PMID: 38714678 PMCID: PMC11608251 DOI: 10.1038/s41598-024-60447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
We present an advanced electrochemical immunosensor designed to detect the vascular endothelial growth factor (VEGF) precisely. The sensor is constructed on a modified porous gold electrode through a fabrication process involving the deposition of silver and gold on an FTO substrate. Employing thermal annealing and a de-alloying process, the silver is eliminated from the electrode, producing a reproducible porous gold substrate. Utilizing a well-defined protocol, we immobilize the heavy-chain (VHH) antibody against VEGF on the gold substrate, facilitating VEGF detection through various electrochemical methods. Remarkably, this immunosensor performs well, featuring an impressive detection limit of 0.05 pg/mL and an extensive linear range from 0.1 pg/mL to 0.1 µg/mL. This emphasizes it's to measure biomarkers across a wide concentration spectrum precisely. The robust fabrication methodology in this research underscores its potential for widespread application, offering enhanced precision, reproducibility, and remarkable detection capabilities for the developed immunosensor.
Collapse
Affiliation(s)
- Sadaf Yarjoo
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| | - Hossein Siampour
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, P. O. Box 81746-73461, Isfahan, Iran
| | - Mehrsa Khalilipour
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - Hassan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran.
- Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran.
| |
Collapse
|
8
|
Zeng J, Deng Q, Chen Z, Yan S, Dong Q, Zhang Y, Cui Y, Li L, He Y, Shi J. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021-2023). Bioorg Chem 2024; 146:107278. [PMID: 38484586 DOI: 10.1016/j.bioorg.2024.107278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.
Collapse
Affiliation(s)
- Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuang Yan
- Sichuan University of Arts and Science, DaZhou 635000, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, Sichuan 611137, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
9
|
Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol 2024; 150:221. [PMID: 38687357 PMCID: PMC11061008 DOI: 10.1007/s00432-024-05714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.
Collapse
Affiliation(s)
- Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Lye LF, Chou RH, Wu TK, Chuang WL, Tsai SCS, Lin HJ, Tsai FJ, Chang KH. Administration of Bevacizumab and the Risk of Chronic Kidney Disease Development in Taiwan Residents: A Population-Based Retrospective Cohort Study. Int J Mol Sci 2023; 25:340. [PMID: 38203509 PMCID: PMC10778964 DOI: 10.3390/ijms25010340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a significant role as a pro-angiogenic and pro-permeability factor within the kidney. Bevacizumab is a pharmaceutical monoclonal anti-VEGF antibody that inhibits the growth of new blood vessels, which blocks blood supply and thereby restricts tumor growth. Thus, we conducted a nationwide study to explore the risk of chronic kidney disease (CKD) development in Taiwan residents after bevacizumab therapy. We drew data from the extensive National Health Insurance Research Database (NHIRD), which encompasses data from >99% of Taiwan's population from 1995 onwards. Individuals who received bevacizumab between 2012-2018 were identified as the bevacizumab cohort, with the index date set at the first usage. We randomly selected dates within the study period for the control group to serve as index dates. We excluded patients with a history of CKD prior to the index date or those <20 years old. In both cohorts, patients' propensity scores matched in a 1:1 ratio based on sex, age, index year, income, urbanization level, comorbidities, and medications. We found patients treated with bevacizumab had a significantly higher risk of contracting CKD than patients without bevacizumab (adjusted hazard ratio = 1.35, 95% confidence interval = 1.35-1.73). The risk of CKD was 1.35-fold higher in participants with bevacizumab treatment than those in the control group. These findings suggest that close monitoring of CKD development after bevacizumab administration is needed.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung 413, Taiwan
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Wu-Lung Chuang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Lukang Christian Hospital, Changhua 505, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Heng-Jun Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Division of Medical Genetics, China Medical University Children’s Hospital, Taichung 404, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 413, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| |
Collapse
|