1
|
Paraskar G, Bhattacharya S, Kuttiappan A. The Role of Proteomics and Genomics in the Development of Colorectal Cancer Diagnostic Tools and Potential New Treatments. ACS Pharmacol Transl Sci 2025; 8:1227-1250. [PMID: 40370990 PMCID: PMC12070319 DOI: 10.1021/acsptsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
The complex molecular mechanisms involving genetic and epigenetic modifications contribute to colorectal cancer (CRC), which remains a significant threat to world health. This review elucidates the role of proteomics and genomics in the progression, diagnosis, and treatment of colorectal cancers. All potential key pathways involved in CRC, including WNT, MAPK, PI3K, and TGF-β pathways, are reviewed with a systematic analysis, concluding with their involvement in tumorigenesis and therapeutic resistance. Emerging next-generation sequencing technologies revealed critical mutations that are relevant to CRC development. Proteomics has contributed to identifying biomarkers and post-translational modifications that hold promise for targeted therapies. Recent technological advances have provided functional insights into protein signaling networks and pathways through mass spectrometry and integrated proteogenomic approaches. This work emphasizes biomarker-driven translational efforts that integrate genomic insights with protein expression profiles to refine personalized treatments. The application of innovations in liquid biopsy and computational biology advocates for precision medicine paths to improve the outcomes for CRC. Now, pharmacoproteomics offers novel domains for drug discovery and resistance management and serves as a foundation for comprehensive CRC treatment paradigms.
Collapse
Affiliation(s)
- Gaurav Paraskar
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Anitha Kuttiappan
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Sun A, Franzmann EJ, Chen Z, Cai X. Deep contrastive learning for predicting cancer prognosis using gene expression values. Brief Bioinform 2024; 25:bbae544. [PMID: 39471411 PMCID: PMC11521346 DOI: 10.1093/bib/bbae544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024] Open
Abstract
Recent advancements in image classification have demonstrated that contrastive learning (CL) can aid in further learning tasks by acquiring good feature representation from a limited number of data samples. In this paper, we applied CL to tumor transcriptomes and clinical data to learn feature representations in a low-dimensional space. We then utilized these learned features to train a classifier to categorize tumors into a high- or low-risk group of recurrence. Using data from The Cancer Genome Atlas (TCGA), we demonstrated that CL can significantly improve classification accuracy. Specifically, our CL-based classifiers achieved an area under the receiver operating characteristic curve (AUC) greater than 0.8 for 14 types of cancer, and an AUC greater than 0.9 for 3 types of cancer. We also developed CL-based Cox (CLCox) models for predicting cancer prognosis. Our CLCox models trained with the TCGA data outperformed existing methods significantly in predicting the prognosis of 19 types of cancer under consideration. The performance of CLCox models and CL-based classifiers trained with TCGA lung and prostate cancer data were validated using the data from two independent cohorts. We also show that the CLCox model trained with the whole transcriptome significantly outperforms the Cox model trained with the 16 genes of Oncotype DX that is in clinical use for breast cancer patients. The trained models and the Python codes are publicly accessible and provide a valuable resource that will potentially find clinical applications for many types of cancer.
Collapse
Affiliation(s)
- Anchen Sun
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL 33146, United States
| | - Elizabeth J Franzmann
- Department of Otolaryngology, University of Miami, Miami, FL 33146, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, United States
| | - Zhibin Chen
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, United States
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33146, United States
| | - Xiaodong Cai
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL 33146, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, United States
| |
Collapse
|
3
|
Rejali L, Seifollahi Asl R, Sanjabi F, Fatemi N, Asadzadeh Aghdaei H, Saeedi Niasar M, Ketabi Moghadam P, Nazemalhosseini Mojarad E, Mini E, Nobili S. Principles of Molecular Utility for CMS Classification in Colorectal Cancer Management. Cancers (Basel) 2023; 15:2746. [PMID: 37345083 PMCID: PMC10216373 DOI: 10.3390/cancers15102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer-related deaths in both sexes globally and presents different clinical outcomes that are described by a range of genomic and epigenomic alterations. Despite the advancements in CRC screening plans and treatment strategies, the prognosis of CRC is dismal. In the last two decades, molecular biomarkers predictive of prognosis have been identified in CRC, although biomarkers predictive of treatment response are only available for specific biological drugs used in stage IV CRC. Translational clinical trials mainly based on "omic" strategies allowed a better understanding of the biological heterogeneity of CRCs. These studies were able to classify CRCs into subtypes mainly related to prognosis, recurrence risk, and, to some extent, also to treatment response. Accordingly, the comprehensive molecular characterizations of CRCs, including The Cancer Genome Atlas (TCGA) and consensus molecular subtype (CMS) classifications, were presented to improve the comprehension of the genomic and epigenomic landscapes of CRCs for a better patient management. The CMS classification obtained by the CRC subtyping consortium categorizes CRC into four consensus molecular subtypes (CMS1-4) characterized by different prognoses. In this review, we discussed the CMS classification in different settings with a focus on its relationships with precursor lesions, tumor immunophenotype, and gut microbiota, as well as on its role in predicting prognosis and/or response to pharmacological treatments, as a crucial step towards precision medicine.
Collapse
Affiliation(s)
- Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Romina Seifollahi Asl
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran P.O. Box 14496-14535, Iran;
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Mahsa Saeedi Niasar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Pardis Ketabi Moghadam
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, Tehran P.O. Box 19857-17411, Iran;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy;
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy
| |
Collapse
|
4
|
[Anticancer effect of modified banana (Musa cavendish AAA) starch in rats with 1.2-dimethylhydrazine]. NUTR HOSP 2021; 37:147-154. [PMID: 31793323 DOI: 10.20960/nh.02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: resistant starch (RS) is not completely digested in the human intestine but is fermented in the colon; intestinal pH decreases as short-chain fatty acids are produced. This is beneficial for health, and for preventing and treating rectal colon cancer. Pyrodextrinization and enzymatic hydrolysis are modifications to native starch (NS) that may increase the amount of RS. Objective: the objective of this project was to evaluate the effects of M. cavendish AAA native and both chemically and enzymatically modified starches on tumor markers in rats. Methods: modifications (chemical and enzymatic) were made to M. cavendish AAA NS, and were evaluated in rats with 1,2-DMH. Male Sprague Dawley rats (25) were used, divided into five experimental groups: PC, NC, NS, PI, and ERM. During 4 weeks they received the experimental diet assigned to each group. The PC, NS, PI and ERM groups received 2 weekly s.c. (subcutaneous) injections of 1,2-DMH (40 mg/kg) (third and fourth week). In feces, pH, β-glucuronidase enzyme, and short-chain fatty acids were evaluated, and a histopathological study was performed of the intestine to detect microscopic lesions. Results: the activity of β-glucuronidase decreased (p < 0.05) for NS, PI and ERM vs. PC. The highest proportion of butyric acid was observed in the NS (p < 0.05) vs. NC group. Sixty percent of enteritides were severe in grade in the PC group, and 40 % in the experimental groups. Conclusions: native starch granules resisted pyrodextrinization, but treatment with α-amylase broke the structure of the pyrodextrin granule. According to the treatments given to the rats, as the amount of RS present in the diet increases (NS), the neoplastic cells do not advance beyond the basement membrane, suggesting a possible cell-protective or anticancer effect.
Collapse
|
5
|
Mukund K, Syulyukina N, Ramamoorthy S, Subramaniam S. Right and left-sided colon cancers - specificity of molecular mechanisms in tumorigenesis and progression. BMC Cancer 2020; 20:317. [PMID: 32293332 PMCID: PMC7161305 DOI: 10.1186/s12885-020-06784-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Given the differences in embryonic origin, vascular and nervous supplies, microbiotic burden, and main physiological functions of left and right colons, tumor location is increasingly suggested to dictate tumor behavior affecting pathology, progression and prognosis. Right-sided colon cancers arise in the cecum, ascending colon, hepatic flexure and/or transverse colon, while left-sided colon cancers arise in the splenic flexure, descending, and/or sigmoid colon. In contrast to prior reports, we attempt to delineate programs of tumorigenesis independently for each side. Methods Four hundred and eleven samples were extracted from The Cancer Genome Atlas-COAD cohort, based on a conservative sample inclusion criterion. Each side was independently analyzed with respect to their respective normal tissue, at the level of transcription, post-transcription, miRNA control and methylation in both a stage specific and stage-agnostic manner. Results Our results indicate a suppression of enzymes involved in various stages of carcinogen breakdown including CYP2C8, CYP4F12, GSTA1, and UGT1A within right colon tumors. This implies its reduced capacity to detoxify carcinogens, contributing to a genotoxic tumor environment, and subsequently a more aggressive phenotype. Additionally, we highlight a crucial nexus between calcium homeostasis (sensing, mobilization and absorption) and immune/GPCR signaling within left-sided tumors, possibly contributing to its reduced proliferative and metastatic potential. Interestingly, two genes SLC6A4 and HOXB13 show opposing regulatory trends within right and left tumors. Post-transcriptional regulation mediated by both RNA-binding proteins (e.g. NKRF (in left) and MSI2 (in right)) and miRNAs (e.g. miR-29a (in left); miR-155, miR181-d, miR-576 and miR23a (in right)) appear to exhibit side-specificity in control of their target transcripts and is pronounced in right colon tumors. Additionally, methylation results depict location-specific differences, with increased hypomethylation in open seas within left tumors, and increased hypermethylation of CpG islands within right tumors. Conclusions Differences in molecular mechanisms captured here highlight distinctions in tumorigenesis and progression between left and right colon tumors, which will serve as the basis for future studies, influencing the efficacies of existing and future diagnostic, prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Natalia Syulyukina
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Ramamoorthy
- Division of Colon and Rectal Surgery, Moores Cancer Center, University of California San Diego Health System, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Matsuyama T, Ishikawa T, Takahashi N, Yamada Y, Yasuno M, Kawano T, Uetake H, Goel A. Transcriptomic expression profiling identifies ITGBL1, an epithelial to mesenchymal transition (EMT)-associated gene, is a promising recurrence prediction biomarker in colorectal cancer. Mol Cancer 2019; 18:19. [PMID: 30717807 PMCID: PMC6360655 DOI: 10.1186/s12943-019-0945-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
The current histopathological risk-stratification criteria in colorectal cancer (CRC) patients following a curative surgery remain inadequate. In this study, we undertook a systematic, genomewide, biomarker discovery approach to identify and validate key EMT-associated genes that may facilitate recurrence prediction in CRC. Genomewide RNA expression profiling results from two datasets (GSE17538; N = 173 and GSE41258; N = 307) were used for biomarker discovery. These results were independently validated in two, large, clinical cohorts (testing cohort; N = 201 and validation cohort; N = 468). We performed Gene Set Enrichment Analysis (GSEA) for understanding the function of the candidate markers, and evaluated their correlation with the mesenchymal CMS4 subtype. We identified integrin subunit beta like 1 (ITGBL1) as a promising candidate biomarker, and its high expression associated with poor overall survival (OS) in stage I-IV patients and relapse-free survival (RFS) in stage I-III patients. Subgroup validation in multiple independent patient cohorts confirmed these findings, and demonstrated that high ITGBL1 expression correlated with shorter RFS in stage II patients. We developed a RFS prediction model which robustly predicted RFS (the area under the receiver operating curve (AUROC): 0.74; hazard ratio (HR): 2.72) in CRC patients. ITGBL1 is a promising EMT-associated biomarker for recurrence prediction in CRC patients, which may contribute to improved risk-stratification in CRC.
Collapse
Affiliation(s)
- Takatoshi Matsuyama
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, 3410 Worth Street, Suite 610, Dallas, TX, 75246, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Specialized Surgery, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, National Cancer Center Hospital, Tokyo, Japan
- Department of Gastroenterology, Saitama Cancer Center Hospital, Saitama, Japan
| | - Yasuhide Yamada
- Department of Gastroenterology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Yasuno
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Specialized Surgery, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, 3410 Worth Street, Suite 610, Dallas, TX, 75246, USA.
| |
Collapse
|
7
|
Gong H, Cheng W, Wang Y. Tumor necrosis factor-related apoptosis-inducing ligand inhibits the growth and aggressiveness of colon carcinoma via the exogenous apoptosis signaling pathway. Exp Ther Med 2019; 17:41-50. [PMID: 30651763 PMCID: PMC6307519 DOI: 10.3892/etm.2018.6901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Colon cancer is one of the most common types of gastrointestinal tumor. Previous studies have demonstrated that tumor necrosis factor-(TNF)-related apoptosis-inducing ligand (TRAIL) reduces the aggressiveness of colon cancer tumors and promotes the apoptosis of colon carcinoma cells. In the present study, the inhibitory effects of TRAIL were investigated and the potential mechanism of TRAIL-mediated apoptosis was explored in colon cancer cells. Reverse transcription-quantitative polymerase chain reaction, western blotting, immunofluorescence, immunohistochemistry, TUNEL and flow cytometry assays were used to analyze the effects of TRAIL on the growth, migration, invasion and apoptosis of colon tumor cells. In vivo experiments were performed in mice to analyze the therapeutic effects of TRAIL. The results demonstrated that TRAIL significantly suppressed the growth of colorectal tumor cells in a dose-dependent manner (0.5–2.5 mg/ml) and also promoted colon tumor cell death. The migration and invasion of colon tumor cells were inhibited by the downregulation of fibronectin, Vimentin and E-cadherin. The apoptotic rate revealed that TRAIL (2.0 mg/ml) significantly promoted the apoptosis of colon tumor cells by regulating apoptosis-related gene expression. TRAIL administration promoted the apoptosis of colon tumor cells via the exogenous apoptosis signaling pathway due to the upregulation of caspase-3, caspase-8 and nuclear factor-κB protein expression. In vivo assays revealed that TRAIL administration significantly inhibited tumor growth and promoted apoptotic body and lymphocyte infiltration, which led to increased survival in tumor-bearing mice compared with the control group. Immunohistochemistry revealed that P53 and B-cell lymphoma-2 were downregulated in TRAIL-treated tumors. In conclusion, TRAIL treatment significantly inhibited the growth and aggressiveness of colon tumors by inducing apoptosis via the exogenous apoptosis pathway, which suggests that TRAIL may be a potential anticancer agent for colon carcinoma therapy.
Collapse
Affiliation(s)
- Hongyan Gong
- Department of General Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Weicai Cheng
- Department of General Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Yong Wang
- Department of General Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
8
|
Wang Q, Wang P, Xiao Z. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway. Int J Mol Med 2018; 41:1887-1898. [PMID: 29393371 PMCID: PMC5810243 DOI: 10.3892/ijmm.2018.3423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Resistant starch is as common soluble fiber that escapes digestion in the small intestine and can regulate intestinal function, metabolism of blood glucose and lipids, and may prevent tumorigenesis of gastrointestinal cancer. Epidemiology and other evidence have suggested that resistant starch may prevent colon cancer development. The aim of the current study was to explore the ameliorative effects and potential mechanisms of resistant starch in the tumorigenesis of colon tumors induced by dimethylhydrazine in C57BL/6 mice. Western blot analysis, ELISA, microscopy, immunofluorescence and immunohistochemistry were used to analyze the efficacy of resistant starch on the metabolic balance in the colon and tumorigenesis of colon tumors. The results demonstrated that a diet containing resistant starch decreased the animal body weight and reduced free ammonia, pH and short chain fatty acids in feces compared with mice that received a standard diet. Resistant starch reduced the incidence of colon tumors and suppressed the expression of carcinogenesis-associated proteins, including heat shock protein 25, protein kinase C-d and gastrointestinal glutathione peroxidase in colon epithelial cells compared with standard starch and control groups. Colon tumor cells proliferation and dedifferentiation were significantly decreased by a resistant starch diet. The results also demonstrated that resistant starch increased the apoptosis of colon tumor cells through regulation of apoptosis-associated gene expression levels in colon tumor cells. Oxidative stress and endoplasmic reticulum stress were upregulated, and elevation eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor-4 and secretase-β expression levels were increased in the resistant starch diet group. Additionally, the activity of eIF2α and PERK were increased in colon tumor cells from mice that had received resistant starch. Increasing DNA damage-inducible transcript 3 protein (CHOP), binding immunoglobulin protein (BIP) and caspase-12 expression levels upregulated by resistant starch diet may contribute to the resistant starch-induced apoptosis of colon tumor cells induced by 1,2-dimethylhydrazine. In vitro assays demonstrated that knockdown of eIF2α inhibited apoptosis of colon tumor cells isolated from mice fed with resistant starch, which also downregulated CHOP, BIP and caspase-3 expression levels compared with controls. Furthermore, long-term survival of experimental mice was prolonged by the resistant starch diet compared with the standard diet group. In conclusion, the results indicate that resistant starch in the diet may prevent carcinogenesis of colon epithelial cells, mediated by enhancing apoptosis through an endoplasmic reticulum stress-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Qiuyu Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhigang Xiao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
9
|
Liu LG, Yan XB, Xie RT, Jin ZM, Yang Y. Stromal Expression of Vimentin Predicts the Clinical Outcome of Stage II Colorectal Cancer for High-Risk Patients. Med Sci Monit 2017; 23:2897-2905. [PMID: 28611349 PMCID: PMC5479442 DOI: 10.12659/msm.904486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Increased expression of vimentin in tissue samples from patients with colorectal cancer (CRC) has been previously demonstrated, but its prognostic significance remains controversial, and the clinical significance for patients with stage II CRC is still unknown. The aim of this study was to evaluate the expression of vimentin in CRC and its potential prognostic significance. Material/Methods We analyzed vimentin expression in 203 CRC tissue samples from patients with stage II cancer using immunohistochemistry, and correlated the findings with clinicopathological patient features. CRC-specific survival (CSS) and disease-free survival (DFS) were analyzed using the Kaplan-Meier method. Univariate and multivariate analysis was performed using the Cox proportional hazards method for survival. Results Vimentin expression was significantly correlated only with tumor (T) stage (p=0.024). Kaplan-Meier survival analysis indicated that vimentin expression could stratify the CSS and DFS of patients with stage II CRC at high risk (p=0.029, p=0.042, respectively), but not those of low-risk stage II patients (p=0.208, p=0.361, respectively). Univariate and multivariate analysis further revealed that stromal vimentin expression is an independent prognostic factor for CSS and DFS of high-risk stage II patients (p=0.043, p=0.022, respectively). Moreover, high-risk stage II patients with low stromal vimentin expression benefitted more from standard adjuvant chemotherapy than those with high stromal vimentin expression (CSS: p=0.012 vs. p=0.407; DFS: p=0.017 vs. p=0.420). Conclusions Our study suggests that stromal vimentin expression is a promising indicator for survival prediction and adjuvant chemotherapy response in patients with stage II CRC with high-risk factors for recurrence.
Collapse
Affiliation(s)
- Li-Guo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (mainland)
| | - Xue-Bing Yan
- Department of Medicine, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Ru-Ting Xie
- Department of Pathology, Shanghai Tenth Peoples' Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Zhi-Ming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, Shanghai, China (mainland)
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| |
Collapse
|