1
|
Xiao W, Yue G, Jiang X, Huang S. Exploring Molecular Pathways in Exercise-Induced Recovery from Traumatic Brain Injury. Med Sci Monit 2025; 31:e946973. [PMID: 40219599 PMCID: PMC12001864 DOI: 10.12659/msm.946973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/04/2025] [Indexed: 04/14/2025] Open
Abstract
Traumatic brain injury (TBI) is functional damage or brain injury due to external forces and is a leading cause of death and disability in children and adults. It causes disruption of the blood-brain barrier (BBB), infiltration of peripheral blood cells, oxidative stress, neuroinflammation and apoptosis, neural excitotoxicity, and mitochondrial dysfunction. Studies have shown that PE can be applied as a non-pharmacological therapy and effectively improve functional recovery from TBI. Recovery from TBI can benefit from both pre- or post-TBI exercise through various mechanisms for neurorepair and rehabilitation of behavior and cognition, including alleviation of TBI-induced oxidative stress, upregulation of heat-shock proteins, reduction of TBI-induced inflammation, promotion of secretion of neurotrophic factors to facilitate neural regeneration, suppression of TBI-induced apoptosis to reduce brain injury, and stabilization of mitochondrial function for better cellular function. This review article provides an overview of the effect of pre- and post-TBI exercise on recovery of neurofunctions and cognition following TBI, summarizes the potential regulatory networks and cellular and biological processes involved in recovery of brain functions, and outlines the molecular mechanisms underlying exercise-induced improvement of TBI, including regulation of gene expression and activation of heat-shock proteins and neurotrophic factors under different exercise schemes. These mechanisms involve TBI-induced oxidative stress, upregulation of heat-shock proteins, inflammation, secretion of neurotrophic factors, and TBI-induced apoptosis. Due to high heterogeneity in human TBI, the outcome of exercise intervention is affected by the injury type and severity of TBI. More studies are needed to investigate the application of various exercise approaches that fits TBI under different circumstances, and to elucidate the detailed pathogenesis mechanisms of TBI to develop more patient-tailored interventions.
Collapse
|
2
|
Çalışkan H, Koçak S, Güneş E. Epoetin alfa has a potent anxiolytic effect on naive female rats. BMC Pharmacol Toxicol 2025; 26:18. [PMID: 39876022 PMCID: PMC11773716 DOI: 10.1186/s40360-025-00845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Epoetin alfa is a derivative of the erythropoietin hormone. This study aims to investigate the epoetin alfa effect on anxiety-like behaviors. METHODS Adult female Wistar Albino rats were divided into Control (n = 8), 1000 U Epoetien alfa, and 2000 U Epoetien alpha. Epoetin alfa was administered intraperitoneally once a week for 4 weeks. The animals were then subjected to open field test, elevated plus maze, light-dark box, and the behaviors were video recorded. RESULTS Epoetin alfa significantly reduced anxiety-like behaviors in both low- and high-dose groups in a dose-independent manner. This anxiolytic effect was seen in all three anxiety tests. Further, exploratory behaviors such as unsupported rearing and head-dipping behaviors increased with the application of Epoetin alfa. This protocol did not alter locomotor activity. CONCLUSION The present study found beneficial effects of epoetin alfa on behaviors. Further studies on the effect of derivatives of erythropoietin hormone on anxiety-like behaviors are needed.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Department of Physiology, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Seda Koçak
- Department of Physiology, Kırşehir Ahi Evran University Medicine Faculty, Kırşehir, Turkey
| | - Emel Güneş
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| |
Collapse
|
3
|
Çalışkan H, Önal D, Nalçacı E. Darbepoetin alpha has an anxiolytic and anti-neuroinflammatory effect in male rats. BMC Immunol 2024; 25:75. [PMID: 39523336 PMCID: PMC11552158 DOI: 10.1186/s12865-024-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS We aimed to investigate the anxiolytic effect of darbepoetin alpha (DEPO), an erythropoietin derivative, in a neuroinflammation model regarding different behaviors and biological pathways. METHODS Forty adult male Wistar albino rats were divided into four groups (control, LPS, DEPO, and DEPO + LPS). The rats were treated with 5 µg /kg DEPO once a week for four weeks, after which neuroinflammation was induced with 2 mg/kg lipopolysaccharide (LPS). The elevated plus maze, open-field, and light‒dark box tests were conducted to assess anxiety levels. Harderian gland secretions were scored via observation. Tumor necrosis factor alpha (TNF-α), Interleukin-1-beta (IL-1β), brain-derived growth factor (BDNF), serotonin, cortisol, total antioxidant/oxidant (TAS/TOS), and total/free thiol levels were measured in the prefrontal cortex, striatum, and serum. RESULTS DEPO had a potent anxiolytic effect on both DEPO and DEPO + LPS groups. Compared to the control group, DEPO administration caused an increase in serotonin and BDNF levels and decreased basal cortisol and TNF-α levels in naive rats. IL-1β did not alter after DEPO administration in naive rats. Prophylactic DEPO treatment remarkably downregulated cortisol, IL-1β, and TNF-α in the DEPO + LPS group. In addition, prophylactic DEPO administration significantly attenuated the decrease in serotonin and BDNF levels in the DEPO + LPS group. Furthermore, DEPO ameliorated excessive harderian gland secretion in the DEPO + LPS group. Compared with those in the control group, the free thiol content in the serum increased after DEPO administration. No similar effect was seen in the DEPO + LPS group receiving prophylactic DEPO. TAS showed no difference among all experimental groups. DEPO administration increased TOS and OSI in the serum and prefrontal cortex but not in the striatum. This effect was not seen in the DEPO + LPS group. CONCLUSION Darbepoetin alpha had an anxiolytic effect on many physiological mechanisms in a neuroinflammation model and naive rats.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Deniz Önal
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey
| | - Erhan Nalçacı
- Physiology Department, Ankara University Medicine Faculty , Ankara, Turkey
| |
Collapse
|
4
|
Alrasheed AS, Alqadhibi MA, Khoja RH, Alayyaf AS, Alhumoudi DS, Aldawlan MI, Alghanmi BO, Almutairi FS, Bin-Mahfooz MA, Altalhi LA, Aldanyowi SN, Aleid AM, Alessa AA. Emerging therapies for immunomodulation in traumatic brain injury: A systematic review and meta-analysis. Surg Neurol Int 2024; 15:327. [PMID: 39372991 PMCID: PMC11450791 DOI: 10.25259/sni_502_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Background Traumatic brain injury (TBI) represents a significant global health burden, often leading to significant morbidity and mortality. Mounting evidence underscores the intricate involvement of dysregulated immune responses in TBI pathophysiology, highlighting the potential for immunomodulatory interventions to mitigate secondary injury cascades and enhance patient outcomes. Despite advancements in treatment modalities, optimizing therapeutic strategies remains a critical challenge in TBI management. To address this gap, this systematic review and meta-analysis aimed to rigorously evaluate the efficacy and safety of emerging immunomodulatory therapies in the context of TBI. Methods We searched electronic databases such as PubMed, Scopus, Web of Science and CENTRAL for relevant studies investigating the efficacy of immunomodulatory therapies in TBI that were meticulously selected for inclusion. Two independent reviewers meticulously performed data extraction and quality assessment, adhering to predefined criteria. Both randomized controlled trials (RCTs) and observational studies reporting clinically relevant outcomes, such as mortality rates, the Glasgow coma scale, and adverse events, were meticulously scrutinized. Meta-analysis techniques were employed to assess treatment effects across studies quantitatively and analyzed using the Review Manager software (version 5.2). Results Fourteen studies (n = 1 observational and n = 13 RCTs) were included in our study. Meta-analysis showed no significant overall mortality difference, but erythropoietin (EPO) significantly reduced mortality (odds ratio = 0.49; 95% confidence interval: 0.31-0.78, P = 0.002). The adverse event meta-analysis revealed no significant differences. Conclusion Immunomodulatory therapies did not significantly affect overall mortality, but EPO demonstrated promising results. Adverse events did not significantly differ from controls. Further research is warranted to refine TBI treatment protocols.
Collapse
Affiliation(s)
| | | | - Rammaz Hussam Khoja
- Department of Surgery, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulaziz Saad Alayyaf
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Duaa Saleh Alhumoudi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mubarak Ibrahim Aldawlan
- Department of Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | | - Mohammed Ali Bin-Mahfooz
- Department of Surgery, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lina Abdulrahim Altalhi
- Department of Surgery, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | | | | |
Collapse
|
5
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Miao Q, Wang R, Sun X, Du S, Liu L. Combination of puerarin and tanshinone IIA alleviates ischaemic stroke injury in rats via activating the Nrf2/ARE signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1022-1031. [PMID: 35635784 PMCID: PMC9176674 DOI: 10.1080/13880209.2022.2070221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 06/08/2023]
Abstract
CONTEXT Puerarin (Pue) and tanshinone IIA (Tan IIA) are often used in combination in the treatment of cerebrovascular diseases. OBJECTIVE To investigate the neuroprotective effect and synergic mechanism of Pue-Tan IIA on the treatment of ischaemic stroke (IS). MATERIALS AND METHODS IS was induced in rats by middle cerebral artery occlusion (MCAO). Rats were intraperitoneally injected with Pue (36 mg/kg), Tan IIA (7.2 mg/kg), or Pue-Tan IIA (36 and 7.2 mg/kg) for five times [30 min before ischaemia, immediately after reperfusion (0 h), 24, 48, and 72 h after reperfusion]. After administration, neurological function assessment and histological changes in the brain were performed. S-100β and NSE levels were measured to determine the severity of brain injury. Oxidative stress parameters and inflammatory mediators were measured. The proteins involved in Nrf2/ARE signalling pathway were determined by qRT-PCR and western blot. RESULTS After administration, the neurological function scores, infarct volume, S-100β, and NSE levels were significantly reduced in MCAO rats, especially with Pue-Tan IIA treatment (p < 0.05). All treatments increased T-AOC, CAT, SOD, and GSH activities and reduced GSSG activity and MDA, TNF-α, IL-6, ICAM-1, and COX-2 levels in MCAO rats. Pue-Tan IIA significantly increased Nrf2 expression in the nucleus (1.81-fold) and decreased its expression in the cytoplasm (0.60-fold). Pue-Tan IIA significantly increased the expressions of HO-1 (1.87-fold) and NQO1 (1.76-fold) and decreased Keap1 expression (0.39-fold). DISCUSSION AND CONCLUSIONS The combination of Pue and Tan IIA could alleviate ischaemic brain injury by activating Nrf2/ARE signalling pathway, providing an experimental basis for clinical applications.
Collapse
Affiliation(s)
- Qing Miao
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing, China
| | - Ruihai Wang
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing, China
| | - Xiaoxin Sun
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing, China
| | - Song Du
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing, China
| | - Limei Liu
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Colwell MJ, Tagomori H, Chapman S, Gillespie AL, Cowen PJ, Harmer CJ, Murphy SE. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. Transl Psychiatry 2022; 12:484. [PMID: 36396622 PMCID: PMC9671959 DOI: 10.1038/s41398-022-02249-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Impaired cognition is often overlooked in the clinical management of depression, despite its association with poor psychosocial functioning and reduced clinical engagement. There is an outstanding need for new treatments to address this unmet clinical need, highlighted by our consultations with individuals with lived experience of depression. Here we consider the evidence to support different pharmacological approaches for the treatment of impaired cognition in individuals with depression, including treatments that influence primary neurotransmission directly as well as novel targets such as neurosteroid modulation. We also consider potential methodological challenges in establishing a strong evidence base in this area, including the need to disentangle direct effects of treatment on cognition from more generalised symptomatic improvement and the identification of sensitive, reliable and objective measures of cognition.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Sarah Chapman
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Amy L Gillespie
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|